
A CutEr Tool

Kostis Sagonas

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

Testing
demo: unit, property-based, and concolic testing in Erlang

Concolic execution for Erlang
demo

Support for type specifications
short demo

CutEr: A Concolic Unit Testing tool for Erlang
A “real” experience from using CutEr

short demo

Concluding remarks & future work

Overview

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

Testing is important
Unit testing is the most widely used method
Tools: xUnit, EUnit

Functional languages have mainly explored
variants of property-based random testing
Tools: Haskell QuickCheck, EQC, PropEr, Triq, ...

Testing

First demo!

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

classify(L) ->
case lists:sum(L) of

S when S < 0 -> negative;
S when S < 4711 -> small;
S when S > 4711 -> big

end.

• A program unit:

• In general, pattern matching in Erlang provides a
powerful mechanism for program assertions

A function that classifies a list of numbers

[42,X,X|_] = f(...)

A first example

classify(L) ->
case lists:sum(L) of

S when S < 0 -> negative;
S when S < 4711 -> small;
S when S > 4711 -> big;
_ -> erlang:error(badmatch)

end.

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

In imperative languages, researchers have
argued for the benefits of concolic testing

Fully automatic testing approach
Concolic = Concrete + Symbolic
Aims to achieve high path coverage

Tools: DART, CUTE, Symbolic Java PathFinder, jCUTE, SAGE, ...

Testing

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• Also known as dynamic symbolic execution
• Main idea:

– during concrete execution, collect symbolic constraints
on program inputs that cause the program to follow a
specific execution path and

– use these constraints to force execution of other paths
• Properties/advantages:

– concrete execution makes available accurate
information about program state which may not be
easily accessible when using e.g. random testing or
static analysis techniques

Concolic execution

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• Symbolic execution is enabled by instrumenting the program
with code that collects path constraints without disrupting its
concrete execution

• Each variable that depends on input has both a concrete and
a symbolic value associated to it

• Path constraints are expressed in an appropriate logic

• Off-the-shelf constraint solvers, often SMT ones, are used to
solve these constraints and generate new inputs that will
steer the future test runs to explore unexplored paths

• The execution paths can be expressed as a symbolic
execution tree
– each leaf node has a path constraint describing the input values

that force the program to follow that specific path

Implementation of concolic execution

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

-module(sf2).
-export([foo/1]).

foo(L) ->
lists:foreach(fun fcmp/1, L).

fcmp(X) ->
case cmp(X) of
gt -> ok;
lt -> ok

end.

cmp(X) when X > 42 -> gt;
cmp(42) -> eq;
cmp(X) when X < 42 -> lt.

A second example

Second demo!

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

Second example in Core Erlang

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

Control flow graphs of functions

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

Control flow graphs of functions

∅

54

42

42.0

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• Which decision node to reverse?

• We use two metrics:
– If a decision node exists whose reversed (red) label

has not yet been visited, reverse it
– Else reverse the decision node which is closer to the

root

• Stop when there are no decision nodes left to
reverse

Search strategy

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• Depth counts case constructs that precede the
decision node

• All constraints related to patterns and guards of a
specific case construct are considered to be at
the same depth

• Prune decision nodes whose depth exceeds a
threshold

Depth-bounded search

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

Support for type specifications
• Type specifications impose additional constraints

on program inputs
• For the first demo program:

-type ret() :: 'negative' | 'small' | 'big'.

-spec classify([number()]) -> ret().

• For the second demo program:

Third demo!

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

classify(L) when length(L) < 4 -> tiny;
classify(L) ->

case lists:sum(L) of
S when S < 0 -> negative;
S when S < 4711 -> small;
S when S > 4711 -> big

end.

• A program unit:

A function that classifies a list of numbers

The first example with some twists

classify(L) when length(L) < 4 -> tiny;
classify(L) ->

case lists:foldl(fun erlang:'+'/2, 0, L) of
S when S < 0 -> negative;
S when S < 4711 -> small;
S when S > 4711 -> big

end.

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• A program unit:

A function that classifies a list of numbers

One more twist

classify(_, L) when length(L) < 4 -> tiny;
classify(F, L) ->

case lists:foldl(F, 0, L) of
S when S < 0 -> negative;
S when S < 4711 -> small;
S when S > 4711 -> big

end.

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

CutEr: Concolic Unit Testing for Erlang

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• Define the most general type, i.e. term()

SMT solving with Z3

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• For example, for the terms:
– 42
– [17,42]
– {42,ok}

Encoding values in Z3

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• For example, the path constraint:
¬ (L = [H|T]) ∧ ¬ (L = [])

Encoding axioms in Z3

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• Available on GitHub:

• Requires Erlang/OTP 17.x or 18.x

Current known limitations:
• Does not support maps (yet!)
• Support for recursive types is still incomplete

CutEr

https//github.com/aggelgian/cuter

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

• A post in the erlang-bugs mailing list:

• Module otp_internal from Erlang/OTP 18.0-rc1

A bigger unit to test

https//github.com/erlang/otp/blob/OTP-
18.0-rc1/lib/stdlib/src/otp_internal.erl

http//erlang.org/pipermail/erlang-
bugs/2015-May/004944.html

Demo!

A CutEr Tool @ Erlang Factory 2016 https://github.com/aggelgian/cuter

Concluding remarks
This presentation:

Concolic testing for the “functional” subset of Erlang
CutEr: a tool that implements this approach

Future Work
Better search strategies
Experiment with more SMT solvers
Handle concurrency

https//github.com/aggelgian/cuter

Thanks!

