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Problem 
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Problem 
State Transmission
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Solution 
Aggregate Dissemination
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Local Computation
• Reduce state transmission 

Perform some local computation to 
reduce transmitted state on the wire
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Local Computation
• Reduce state transmission 

Perform some local computation to 
reduce transmitted state on the wire

• Make local decisions  
Make decisions based on results of 
local computation
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As The Model
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Own Their Data
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Example Application 
Preliminary Results
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Preliminary Results
• Conflict-Free Replicated Data Types 

Distributed data structures designed for convergence  
[Shapiro et al., 2011]
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Preliminary Results
• Conflict-Free Replicated Data Types 

Distributed data structures designed for convergence  
[Shapiro et al., 2011]

• Lattice Processing  
Make decisions based on results of local computation 
[Meiklejohn & Van Roy, 2015]

• Selective Hearing  
Epidemic broadcast based runtime system 
[Meiklejohn & Van Roy, 2015/2016]
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Conflict-Free  
Replicated Data Types

• Collection of types 
Sets, counters, registers, flags, maps
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Conflict-Free  
Replicated Data Types

• Collection of types 
Sets, counters, registers, flags, maps

• Strong Eventual Consistency 
Objects that receive the same updates, 
regardless of order, will reach equivalent 
state
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Lattice Processing
• Distributed, deterministic dataflow 

Distributed, dataflow programming model 

• Convergent data structures 
Data abstraction is the CRDT

• Enables composition 
Composition preserves SEC
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%% Create initial set. 
S1 = declare(set), 

%% Add elements to initial set and update. 
update(S1, {add, [1,2,3]}), 

%% Create second set. 
S2 = declare(set), 

%% Apply map operation between S1 and S2. 
map(S1, fun(X) -> X * 2 end, S2). 



93

%% Create initial set. 
S1 = declare(set), 

%% Add elements to initial set and update. 
update(S1, {add, [1,2,3]}), 

%% Create second set. 
S2 = declare(set), 

%% Apply map operation between S1 and S2. 
map(S1, fun(X) -> X * 2 end, S2). 



94

%% Create initial set. 
S1 = declare(set), 

%% Add elements to initial set and update. 
update(S1, {add, [1,2,3]}), 

%% Create second set. 
S2 = declare(set), 

%% Apply map operation between S1 and S2. 
map(S1, fun(X) -> X * 2 end, S2). 



95

%% Create initial set. 
S1 = declare(set), 

%% Add elements to initial set and update. 
update(S1, {add, [1,2,3]}), 

%% Create second set. 
S2 = declare(set), 

%% Apply map operation between S1 and S2. 
map(S1, fun(X) -> X * 2 end, S2). 



96

%% Create initial set. 
S1 = declare(set), 

%% Add elements to initial set and update. 
update(S1, {add, [1,2,3]}), 

%% Create second set. 
S2 = declare(set), 

%% Apply map operation between S1 and S2. 
map(S1, fun(X) -> X * 2 end, S2). 



Selective Hearing
• Epidemic broadcast protocol 

Runtime system for application state & scope

97



Selective Hearing
• Epidemic broadcast protocol 

Runtime system for application state & scope

• Peer-to-peer dissemination 
Pairwise synchronization between peers 
without a central coordinator

97



Selective Hearing
• Epidemic broadcast protocol 

Runtime system for application state & scope

• Peer-to-peer dissemination 
Pairwise synchronization between peers 
without a central coordinator

• No ordering guarantees on messages 
Programming model can tolerate message 
reordering and duplication
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What can we build? 
Leaderboard
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Leaderboard
• Mobile game platform 

Local leaderboard tracking top-k 
highest scored games 
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Leaderboard
• Mobile game platform 

Local leaderboard tracking top-k 
highest scored games 

• Clients will go offline 
Clients have limited connectivity and the 
system still needs to make progress 
while clients are offline
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Leaderboard
• Peer-to-peer dissemination 

Nodes periodically “merge” their state 
with a random peer
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Leaderboard
• Peer-to-peer dissemination 

Nodes periodically “merge” their state 
with a random peer

• Complexity in the data type 
Each node tracks a top-k set of its own 
games in a bounded set
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%% Create a leaderboard datatype. 
L = declare({top_k, [2]}). 

%% Update leaderboard. 
update({set, Name, Score}, L).
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%% Create a leaderboard datatype. 
L = declare({top_k, [2]}). 

%% Update leaderboard. 
update({set, Name, Score}, L).



What if we want to enhance 
the behavior?
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What can we build? 
Per-User Leaderboard
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Per-User Leaderboard
• Enhance existing design 

Only the top score for each user at each device 
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Per-User Leaderboard
• Enhance existing design 

Only the top score for each user at each device 

• Minimize transmitted state 
Prevent transmission of state that is not 
necessary to perform the computation

• Compose data types 
Build a per-user leaderboard through the 
composition of existing types
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Per-User Leaderboard
• Dynamically scoped variables 

Variable which take different values 
depending on where it is executing
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Per-User Leaderboard
• Dynamically scoped variables 

Variable which take different values 
depending on where it is executing

• Dynamically scoped fold operation 
Perform a distributed “reduce” 
operation that combines the state of a 
dynamically scoped variables across
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%% Create a global leaderboard. 
G = declare({top_k, [10]}). 

%% Create a local leaderboard. 
L = declare_dynamic({top_k, [10]}). 

%% Create a set of scores. 
S = declare_dynamic(set). 

%% Compute local top-k list. 
fold(S, fun max_by_name/2, L). 

%% Compute global top-k list. 
fold_dynamic(L, fun max_by_name/2, G).
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What can we build? 
Advertisement Counter
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Advertisement Counter
• Mobile game platform selling 

advertisement space 
Advertisements are paid according to a 
minimum number of impressions 
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• Mobile game platform selling 
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• Clients will go offline 
Clients have limited connectivity and the 
system still needs to make progress 
while clients are offline
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Advertisement Counter
• Completely monotonic 

Disabling advertisements and contracts are all 
modeled through monotonic state growth 

• Arbitrary distribution 
Use of convergent data structures allows 
computational graph to be arbitrarily distributed

• Divergence 
Divergence is a factor of synchronization period
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Advertisement Counter
• “Servers” as peers to “clients” 

Servers are peers to clients that perform additional 
computation

• Any node can disable an advertisement under this 
model given enough information

• “Servers” as trusted nodes 
Serve as a location for performing “exactly once” side-
effects

• Billing customers must be done at a central point by a 
trusted node in the system
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Challenges 
Looking Ahead

141



Causality 
State Explosion
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Security 
Computing at the Edge
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Computations 
Expressiveness
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How restrictive is a programming 
model where operations must be 
associative, commutative, and 

idempotent?
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What’s new?
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• Erlang 18, rebar3, Common Test 

Faster test suite, on Erlang 18 with rebar3

• No Riak Core 
Plumtree distribution replaces the Riak Core 
distribution system

• No NIFs 
Allows us to cross-compile to other platforms 
and not worry about NIF scheduling
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[Almeida et al., 2016]

• Causal CRDTs 
Optimized, garbage-free data structure support 
[Almeida et al., 2016; Meiklejohn 2016, in review]

• Fold 
New semantics for a more expressive fold operation for 
arbitrary computation over sets 
[Meiklejohn 2016, in review]

153



Runtime Improvements
• Delta-State Based Anti-Entropy 

Optimized AAE mechanism based on deltas 
[Almeida et al., 2016]

154



Runtime Improvements
• Delta-State Based Anti-Entropy 

Optimized AAE mechanism based on deltas 
[Almeida et al., 2016]

• Mesos and Docker Enabled 
Run large-scale Lasp clusters on Mesos with Marathon 
[Meiklejohn and Yoo 2016, in review]

154



Runtime Improvements
• Delta-State Based Anti-Entropy 

Optimized AAE mechanism based on deltas 
[Almeida et al., 2016]

• Mesos and Docker Enabled 
Run large-scale Lasp clusters on Mesos with Marathon 
[Meiklejohn and Yoo 2016, in review]

• Loquat 
Epidemic broadcast, partially replicated with 
Decentralized Information Flow Control 
[Meiklejohn 2016, in review]
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• Docker Containers 

Docker containers for EPMD and Lasp runtime 
system

• Service Discovery  
Mechanisms for clustering Erlang nodes based on 
either Marathon application definitions of Mesos-DNS

• Instrumentation  
Transmission instrumentation and divergence 
measurement
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Lasp Simulator
• Plumtree VM-to-VM 

VM-to-VM communication performed using the Plumtree 
epidemic broadcast protocol

• Clients-as-processes  
Multiple clients per virtual machine, acting as mobile/IoT 
devices that periodically simulate and can be partitioned

• “Design in the small, run in the large” 
Runtime configuration change for client-to-VM ratio, 
allows for single laptop design of multi-machine 
evaluations of the programming model
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What’s next?
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Google Summer of Code 
(and my Ph.D.!)

• Partial Evaluation 
Optimize execution based on analysis and annotations 
where we can determine local-vs-remote usage

• Optimizations 
General optimizations of the Erlang implementation of 
Lasp to improve performance of the runtime system

• Elixir / Macros 
Provide a nicer way for working with Lasp, outside of 
the current syntax.
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How do I learn 
more?
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Publications
• “Lasp: A Language for Distributed, Coordination-Free Programming”  

ACM SIGPLAN PPDP 2015


• “Selective Hearing: An Approach to Distributed, Eventually Consistent Edge 
Computation” 
IEEE W-PSDS 2015


• “The Implementation and Use of a Generic Dataflow Behaviour in Erlang” 
ACM SIGPLAN Erlang Workshop ’15 

• “Lasp: A Language for Distributed, Eventually Consistent Computations with CRDTs" 
PaPoC 2015 

• “Declarative, Sliding Window Aggregations for Computations at the Edge" 
IEEE EdgeCom 2016
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Christopher Meiklejohn

@cmeik 
http://www.lasp-lang.org

Thanks!

http://www.lasp-lang.org

