
Declarative,
Secure,
Convergent
Edge Computation
Christopher Meiklejohn

Erlang Factory 2016, March 10th, 2016

1

Example Application
Hospital Refrigerators

2

Hospital Refrigerators
Typical Topology

3

4

Internet

5

Internet HDFS

6

Internet HDFS

Hadoop

Client

Client

Internet

7

Internet HDFS

Hadoop

Client

Client

Internet

Spark

Client

Client

Internet

8

Hospital Refrigerators
Ideal Execution

9

Internet HDFS
Spark

10

Internet HDFS
Spark

35F

11

Internet HDFS
Spark

35F

12

Internet HDFS
Spark

35F40F

13

Internet HDFS
Spark

35F40F

14

ClientInternet HDFS
Spark

35F40F

15

Problem
Connectivity

16

Internet HDFS
Spark

17

Internet HDFS
Spark

35F

18

Internet HDFS
Spark

35F

19

Internet HDFS
Spark

35F40F

20

Internet HDFS
Spark

35F40F

21

Internet HDFS
Spark

35F40F40F

22

Internet HDFS
Spark

35F40F40F

23

Solution
Local Decisions

24

Internet HDFS
Spark

25

Internet HDFS
Spark

35F

26

Internet HDFS
Spark

35F

27

Internet HDFS
Spark

35F40F

28

Internet HDFS
Spark

35F40F

29

Solution
Transitive Dissemination

30

Internet HDFS
Spark

31

Internet HDFS
Spark

35F

32

Internet HDFS
Spark

35F

33

Internet HDFS
Spark

35F40F

34

Internet HDFS
Spark

35F

40F

35

Internet HDFS
Spark

35F40F

Client

36

Problem
State Transmission

37

Internet

38

Internet

35F

39

Internet

35F

35F

35F

35F

40

Internet
35F35F35F35F

41

Solution
Aggregate Dissemination

42

Internet

43

Internet

OK

NO

OK

44

Internet

OK

OK

OK

OK

OK
NO

OK

OK

OK

45

Internet

OK

OK

OK

OK

OK
NO

OK

OK

OK

HDFS

OKOK
OK

OKOKOK
OKOK
NO

46

Internet

OK

OK

OK

OK

OK
NO

OK

OK

OK

OKOK
OK OKOKOKOKOK

NO

= =

HDFS

OKOK

OKOKOK
OKOK
NO

47

Internet

OK

OK

OK

OK

OK
NO

OK

OK

OK

?

OKOK
OK OKOKOKOKOK

NO

= =

48

Internet

OK

OK

OK

OK

OK
NO

OK

OK

OK

?

OKOK
OK OKOKOKOKOK

NO

= =

49

Local Computation
• Reduce state transmission 

Perform some local computation to
reduce transmitted state on the wire

50

Local Computation
• Reduce state transmission 

Perform some local computation to
reduce transmitted state on the wire

• Make local decisions  
Make decisions based on results of
local computation

50

Databases
Consistency Models

51

Databases
Strong Consistency

52

R1

C1 C2

53

R1

C1 C2

Value 1

54

R1

C1 C2

Read Value 1

Value 1

Value 1

55

R1

C1 C2

Read Value 1

Value 1 Value 1

Value 1

56

R1

C1 C2

CAS Value 1 with Value 2

Value 2 Value 1

Value 2

57

R1

C1 C2

CAS Value 1 with Value 3

Value 2 Value 1

Value 2

58

I won’t diagram
the Paxos protocol

59

R2

C1 C2

Value 2 Value 1

Value 2

R1 R3

Paxos

60

Databases
Eventual Consistency

61

R1 R2 R3

C1 C2

62

R1 R2 R3

C1 C2

Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0]

63

R1 R2 R3

C1 C2

Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0]

Value 1 @ [1, 0, 0]

64

R1 R2 R3

C1 C2

Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0]

Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0]

65

R1 R2 R3

C1 C2

Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0]

Value 1 @ [1, 0, 0] Value 1 @ [1, 0, 0]

Write 2

66

R1 R2 R3

C1 C2

Value 2 @ [2, 0, 0] Value 2 @ [2, 0, 0] Value 2 @ [2, 0, 0]

Value 2 @ [2, 0, 0] Value 1 @ [1, 0, 0]

Write 2
Write Value 2 @ [2, 0, 0]

67

R1 R2 R3

C1 C2

Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Value 2 @ [2, 0, 0] Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Write 3

68

R1 R2 R3

C1 C2

Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

69

R1 R2 R3

C1 C2

Value 4 @ [2, 0, 1] Value 4 @ [2, 0, 1] Value 4 @ [2, 0, 1]

Value 4 @ [2, 0, 1] Value 2 @ [2, 0, 0]
Value 3 @ [1, 0, 1]

Write 4

70

Eventual Consistency
As The Model

71

Clients
Own Their Data

72

OK

OK

OK

73

OK

OK

OK

OK

OKOK
OK

OKOK

74

OKOKOK

OKOKOK

OKOKOK

75

OKOK

OKOKOK

OKOK

76

OKOKOK

OKOKOK

OKOKOK

77

Computations
Mergability & Provenance

78

A

A

B

C

79

A

A

B

C

D’

D’’

F

F

80

A

A

B

C

D’

D’’

D’ D’’ D 

F

F

81

D’’

A

A

B

C

D’

D’ D’’ D 

D

D

Merge

F

F

82

Example Application
Preliminary Results

83

Preliminary Results
• Conflict-Free Replicated Data Types 

Distributed data structures designed for convergence  
[Shapiro et al., 2011]

84

Preliminary Results
• Conflict-Free Replicated Data Types 

Distributed data structures designed for convergence  
[Shapiro et al., 2011]

• Lattice Processing  
Make decisions based on results of local computation 
[Meiklejohn & Van Roy, 2015]

84

Preliminary Results
• Conflict-Free Replicated Data Types 

Distributed data structures designed for convergence  
[Shapiro et al., 2011]

• Lattice Processing  
Make decisions based on results of local computation 
[Meiklejohn & Van Roy, 2015]

• Selective Hearing  
Epidemic broadcast based runtime system 
[Meiklejohn & Van Roy, 2015/2016]

84

Conflict-Free  
Replicated Data Types

• Collection of types 
Sets, counters, registers, flags, maps

85

Conflict-Free  
Replicated Data Types

• Collection of types 
Sets, counters, registers, flags, maps

• Strong Eventual Consistency 
Objects that receive the same updates,
regardless of order, will reach equivalent
state

85

RA

RB

RC

RA

RB

RC

{1}

(1, {a}, {})

add(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {c}, {})

add(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {c}, {})

add(1)

{}

(1, {c}, {c})

remove(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {c}, {})

add(1)

{}

(1, {c}, {c})

remove(1)

{1}

{1}

{1}

(1, {a, c}, {c})

(1, {a, c}, {c})

(1, {a, c}, {c})

Lattice Processing
• Distributed, deterministic dataflow 

Distributed, dataflow programming model

91

Lattice Processing
• Distributed, deterministic dataflow 

Distributed, dataflow programming model

• Convergent data structures 
Data abstraction is the CRDT

91

Lattice Processing
• Distributed, deterministic dataflow 

Distributed, dataflow programming model

• Convergent data structures 
Data abstraction is the CRDT

• Enables composition 
Composition preserves SEC

91

92

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

93

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

94

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

95

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

96

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

Selective Hearing
• Epidemic broadcast protocol 

Runtime system for application state & scope

97

Selective Hearing
• Epidemic broadcast protocol 

Runtime system for application state & scope

• Peer-to-peer dissemination 
Pairwise synchronization between peers
without a central coordinator

97

Selective Hearing
• Epidemic broadcast protocol 

Runtime system for application state & scope

• Peer-to-peer dissemination 
Pairwise synchronization between peers
without a central coordinator

• No ordering guarantees on messages 
Programming model can tolerate message
reordering and duplication

97

What can we build?
Leaderboard

98

Leaderboard
• Mobile game platform 

Local leaderboard tracking top-k
highest scored games

99

Leaderboard
• Mobile game platform 

Local leaderboard tracking top-k
highest scored games

• Clients will go offline 
Clients have limited connectivity and the
system still needs to make progress
while clients are offline

99

Client 1
Leaderboard

Client 3
Leaderboard

Client 2
Leaderboard

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

100

Leaderboard
• Peer-to-peer dissemination 

Nodes periodically “merge” their state
with a random peer

101

Leaderboard
• Peer-to-peer dissemination 

Nodes periodically “merge” their state
with a random peer

• Complexity in the data type 
Each node tracks a top-k set of its own
games in a bounded set

101

102

%% Create a leaderboard datatype.
L = declare({top_k, [2]}).

%% Update leaderboard.
update({set, Name, Score}, L).

103

%% Create a leaderboard datatype.
L = declare({top_k, [2]}).

%% Update leaderboard.
update({set, Name, Score}, L).

104

%% Create a leaderboard datatype.
L = declare({top_k, [2]}).

%% Update leaderboard.
update({set, Name, Score}, L).

What if we want to enhance
the behavior?

105

What if we want to enhance
the behavior?

105

Without the creation of a
new datatype

What can we build?
Per-User Leaderboard

106
EdgeCom 2016

Per-User Leaderboard
• Enhance existing design 

Only the top score for each user at each device

107

Per-User Leaderboard
• Enhance existing design 

Only the top score for each user at each device

• Minimize transmitted state 
Prevent transmission of state that is not
necessary to perform the computation

107

Per-User Leaderboard
• Enhance existing design 

Only the top score for each user at each device

• Minimize transmitted state 
Prevent transmission of state that is not
necessary to perform the computation

• Compose data types 
Build a per-user leaderboard through the
composition of existing types

107

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Lasp Operation

Input
User-Maintained CRDT

Output
Lasp-Maintained CRDT Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

108

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

109

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

110

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

111

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

112

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

113

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

114

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Lasp Operation

Input
User-Maintained CRDT

Output
Lasp-Maintained CRDT Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

115

Client1
Scores

Local
Top-K

Fold

Global
Top-K

Fold

Client3

Scores

Local
Top-K

FoldGlobal
Top-K

Fold

Client2

Scores

Local
Top-K

Fold Global
Top-K

Fold

Per-User Leaderboard
• Dynamically scoped variables 

Variable which take different values
depending on where it is executing

116

Per-User Leaderboard
• Dynamically scoped variables 

Variable which take different values
depending on where it is executing

• Dynamically scoped fold operation 
Perform a distributed “reduce”
operation that combines the state of a
dynamically scoped variables across

116

117

%% Create a global leaderboard.
G = declare({top_k, [10]}).

%% Create a local leaderboard.
L = declare_dynamic({top_k, [10]}).

%% Create a set of scores.
S = declare_dynamic(set).

%% Compute local top-k list.
fold(S, fun max_by_name/2, L).

%% Compute global top-k list.
fold_dynamic(L, fun max_by_name/2, G).

118

%% Create a global leaderboard.
G = declare({top_k, [10]}).

%% Create a local leaderboard.
L = declare_dynamic({top_k, [10]}).

%% Create a set of scores.
S = declare_dynamic(set).

%% Compute local top-k list.
fold(S, fun max_by_name/2, L).

%% Compute global top-k list.
fold_dynamic(L, fun max_by_name/2, G).

119

%% Create a global leaderboard.
G = declare({top_k, [10]}).

%% Create a local leaderboard.
L = declare_dynamic({top_k, [10]}).

%% Create a set of scores.
S = declare_dynamic(set).

%% Compute local top-k list.
fold(S, fun max_by_name/2, L).

%% Compute global top-k list.
fold_dynamic(L, fun max_by_name/2, G).

120

%% Create a global leaderboard.
G = declare({top_k, [10]}).

%% Create a local leaderboard.
L = declare_dynamic({top_k, [10]}).

%% Create a set of scores.
S = declare_dynamic(set).

%% Compute local top-k list.
fold(S, fun max_by_name/2, L).

%% Compute global top-k list.
fold_dynamic(L, fun max_by_name/2, G).

121

%% Create a global leaderboard.
G = declare({top_k, [10]}).

%% Create a local leaderboard.
L = declare_dynamic({top_k, [10]}).

%% Create a set of scores.
S = declare_dynamic(set).

%% Compute local top-k list.
fold(S, fun max_by_name/2, L).

%% Compute global top-k list.
fold_dynamic(L, fun max_by_name/2, G).

122

%% Create a global leaderboard.
G = declare({top_k, [10]}).

%% Create a local leaderboard.
L = declare_dynamic({top_k, [10]}).

%% Create a set of scores.
S = declare_dynamic(set).

%% Compute local top-k list.
fold(S, fun max_by_name/2, L).

%% Compute global top-k list.
fold_dynamic(L, fun max_by_name/2, G).

Let’s look at a larger
application

123

Let’s look at a larger
application

123

With visible  
non-monotonicity

What can we build?
Advertisement Counter

124

Advertisement Counter
• Mobile game platform selling

advertisement space 
Advertisements are paid according to a
minimum number of impressions

125

Advertisement Counter
• Mobile game platform selling

advertisement space 
Advertisements are paid according to a
minimum number of impressions

• Clients will go offline 
Clients have limited connectivity and the
system still needs to make progress
while clients are offline

125

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

126

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

127

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

128

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

129

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

130

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

131

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

132

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

133

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

134

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Advertisement Counter
• Completely monotonic 

Disabling advertisements and contracts are all
modeled through monotonic state growth

135

Advertisement Counter
• Completely monotonic 

Disabling advertisements and contracts are all
modeled through monotonic state growth

• Arbitrary distribution 
Use of convergent data structures allows
computational graph to be arbitrarily distributed

135

Advertisement Counter
• Completely monotonic 

Disabling advertisements and contracts are all
modeled through monotonic state growth

• Arbitrary distribution 
Use of convergent data structures allows
computational graph to be arbitrarily distributed

• Divergence 
Divergence is a factor of synchronization period

135

Client3

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Riot Ad
Counter

1

Client1

Client2

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Rovio Ad
Counter

1

Riot Ad
Counter

2

Riot Ad
Counter

1

Riot Ad
Counter

1

Ads
With

Contracts

Ads
With

Contracts

Ads
With

Contracts

Server

Ads
With

Contracts

Server
Computation!

136

Client3

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Riot Ad
Counter

1

Client1

Client2

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Rovio Ad
Counter

1

Riot Ad
Counter

2

Riot Ad
Counter

1

Riot Ad
Counter

1

Ads
With

Contracts

Ads
With

Contracts

Ads
With

Contracts

Server

Ads
With

Contracts

Server
Computation!

137

Client3

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Riot Ad
Counter

1

Client1

Client2

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Rovio Ad
Counter

1

Riot Ad
Counter

2

Riot Ad
Counter

1

Riot Ad
Counter

1

Ads
With

Contracts

Ads
With

Contracts

Ads
With

Contracts

Server

Ads
With

Contracts

Server
Computation!

138

Advertisement Counter
• “Servers” as peers to “clients” 

Servers are peers to clients that perform additional
computation

139

Advertisement Counter
• “Servers” as peers to “clients” 

Servers are peers to clients that perform additional
computation

• Any node can disable an advertisement under this
model given enough information

139

Advertisement Counter
• “Servers” as peers to “clients” 

Servers are peers to clients that perform additional
computation

• Any node can disable an advertisement under this
model given enough information

• “Servers” as trusted nodes 
Serve as a location for performing “exactly once” side-
effects

139

Advertisement Counter
• “Servers” as peers to “clients” 

Servers are peers to clients that perform additional
computation

• Any node can disable an advertisement under this
model given enough information

• “Servers” as trusted nodes 
Serve as a location for performing “exactly once” side-
effects

• Billing customers must be done at a central point by a
trusted node in the system

139

We’ve build up from zero
synchronization

140

We’ve build up from zero
synchronization

140

Instead of working to
remove synchronization

Challenges
Looking Ahead

141

Causality
State Explosion

142

Set

Counter

Set

Counter

{1}

(1, {c}, {})

1

{(c, 1)}, {}

Set

Counter

{1}

(1, {c}, {})

1

{(c, 1)}, {}

{}

(1, {c}, {c})

{(c, 1)}, {(c, 1)}

0

Set

Counter

{1}

(1, {c}, {})

1

{(c, 1)}, {}

{}

(1, {c}, {c})

{(c, 1)}, {(c, 1)}

0

{1}

(1, {a, c}, {c})

{1}

1 1

{(c, 1), (a, 1}}, {(c, 1)}

Security
Computing at the Edge

147

OK

OK

OK

148

Computations
Expressiveness

149

How restrictive is a programming
model where operations must be
associative, commutative, and

idempotent?

150

What’s new?

151

Since Erlang Factory 2015
• Erlang 18, rebar3, Common Test 

Faster test suite, on Erlang 18 with rebar3

152

Since Erlang Factory 2015
• Erlang 18, rebar3, Common Test 

Faster test suite, on Erlang 18 with rebar3

• No Riak Core 
Plumtree distribution replaces the Riak Core
distribution system

152

Since Erlang Factory 2015
• Erlang 18, rebar3, Common Test 

Faster test suite, on Erlang 18 with rebar3

• No Riak Core 
Plumtree distribution replaces the Riak Core
distribution system

• No NIFs 
Allows us to cross-compile to other platforms
and not worry about NIF scheduling

152

Semantics Improvements
• Delta-State Based Conflict-Free Replicated Data Types 

Optimized state dissemination by shipping deltas  
[Almeida et al., 2016]

153

Semantics Improvements
• Delta-State Based Conflict-Free Replicated Data Types 

Optimized state dissemination by shipping deltas  
[Almeida et al., 2016]

• Causal CRDTs 
Optimized, garbage-free data structure support 
[Almeida et al., 2016; Meiklejohn 2016, in review]

153

Semantics Improvements
• Delta-State Based Conflict-Free Replicated Data Types 

Optimized state dissemination by shipping deltas  
[Almeida et al., 2016]

• Causal CRDTs 
Optimized, garbage-free data structure support 
[Almeida et al., 2016; Meiklejohn 2016, in review]

• Fold 
New semantics for a more expressive fold operation for
arbitrary computation over sets 
[Meiklejohn 2016, in review]

153

Runtime Improvements
• Delta-State Based Anti-Entropy 

Optimized AAE mechanism based on deltas 
[Almeida et al., 2016]

154

Runtime Improvements
• Delta-State Based Anti-Entropy 

Optimized AAE mechanism based on deltas 
[Almeida et al., 2016]

• Mesos and Docker Enabled 
Run large-scale Lasp clusters on Mesos with Marathon 
[Meiklejohn and Yoo 2016, in review]

154

Runtime Improvements
• Delta-State Based Anti-Entropy 

Optimized AAE mechanism based on deltas 
[Almeida et al., 2016]

• Mesos and Docker Enabled 
Run large-scale Lasp clusters on Mesos with Marathon 
[Meiklejohn and Yoo 2016, in review]

• Loquat 
Epidemic broadcast, partially replicated with
Decentralized Information Flow Control 
[Meiklejohn 2016, in review]

154

Lasp Simulator
• Docker Containers 

Docker containers for EPMD and Lasp runtime
system

155

Lasp Simulator
• Docker Containers 

Docker containers for EPMD and Lasp runtime
system

• Service Discovery  
Mechanisms for clustering Erlang nodes based on
either Marathon application definitions of Mesos-DNS

155

Lasp Simulator
• Docker Containers 

Docker containers for EPMD and Lasp runtime
system

• Service Discovery  
Mechanisms for clustering Erlang nodes based on
either Marathon application definitions of Mesos-DNS

• Instrumentation  
Transmission instrumentation and divergence
measurement

155

Lasp Simulator
• Plumtree VM-to-VM 

VM-to-VM communication performed using the Plumtree
epidemic broadcast protocol

156

Lasp Simulator
• Plumtree VM-to-VM 

VM-to-VM communication performed using the Plumtree
epidemic broadcast protocol

• Clients-as-processes  
Multiple clients per virtual machine, acting as mobile/IoT
devices that periodically simulate and can be partitioned

156

Lasp Simulator
• Plumtree VM-to-VM 

VM-to-VM communication performed using the Plumtree
epidemic broadcast protocol

• Clients-as-processes  
Multiple clients per virtual machine, acting as mobile/IoT
devices that periodically simulate and can be partitioned

• “Design in the small, run in the large” 
Runtime configuration change for client-to-VM ratio,
allows for single laptop design of multi-machine
evaluations of the programming model

156

157

��

���

���

���

����

� �� ��� ��� ��� ��� ���

�
��
��
��
��
�
��
�
��
��
��
��

���� �� �������

������� ���������� ��������� �����
������� ���������� ��������� ��

158

�������

������

�����

����

���

�

�

�

� �� ��� ��� ��� ��� ���

�
��
��
��
��
�
��
��
�
���
��

���� �� �������

������� ���������
������� ���������� ������

159

What’s next?

160

Google Summer of Code
(and my Ph.D.!)

• Partial Evaluation 
Optimize execution based on analysis and annotations
where we can determine local-vs-remote usage

161

Google Summer of Code
(and my Ph.D.!)

• Partial Evaluation 
Optimize execution based on analysis and annotations
where we can determine local-vs-remote usage

• Optimizations 
General optimizations of the Erlang implementation of
Lasp to improve performance of the runtime system

161

Google Summer of Code
(and my Ph.D.!)

• Partial Evaluation 
Optimize execution based on analysis and annotations
where we can determine local-vs-remote usage

• Optimizations 
General optimizations of the Erlang implementation of
Lasp to improve performance of the runtime system

• Elixir / Macros 
Provide a nicer way for working with Lasp, outside of
the current syntax.

161

How do I learn
more?

162

Publications
• “Lasp: A Language for Distributed, Coordination-Free Programming”  

ACM SIGPLAN PPDP 2015

• “Selective Hearing: An Approach to Distributed, Eventually Consistent Edge
Computation” 
IEEE W-PSDS 2015

• “The Implementation and Use of a Generic Dataflow Behaviour in Erlang” 
ACM SIGPLAN Erlang Workshop ’15

• “Lasp: A Language for Distributed, Eventually Consistent Computations with CRDTs" 
PaPoC 2015

• “Declarative, Sliding Window Aggregations for Computations at the Edge" 
IEEE EdgeCom 2016

163

164

Christopher Meiklejohn

@cmeik
http://www.lasp-lang.org

Thanks!

http://www.lasp-lang.org

