Erlang On NixOS

Erlang On NixOS
Managing And Releasing Erlang Systems In The Cloud With A Fully

Declarative W System

Eric Merritt

March 11, 2016

Eric Merritt = March 11, 2016 1/18

Erlang On NixOS

Declarative Supervision

init(-Args) —
SupFlags = #{strategy => one_for_one,
intensity => 1,
period => 5},
ChildSpecs = [#{id => ch3,
start => {ch3, start_link, []},
restart => permanent,
shutdown => brutal_kill ,
type => worker,
modules => [cg3]}].
{ok, {SupFlags, ChildSpecs}}.

Eric Merritt = March 11, 2016 2/18

Declarative Releases

{application, 'gremlin’,
[{description, "Don't._feed_them_after_midnight”},
{vsn, "0.1.0"},
{registered , []},
{mod, {'gremlin_app’', []}}.
{applications ,

[kernel ,
stdlib ,
elli
jsx

1}
1}

Eric Merritt = March 11, 2016 3/18

Declarative Releases

{relx, [{release, {thorndyke, "0.0.1"},
[thorndyke]},

{include_erts , false},

{extended_start_script , false}]}.

Eric Merritt = March 11, 2016 4/18

Erlang On NixOS

777

itt | March 11, 20

Imperative Deployment

Create Tarballs/deb/rpm /fpm
Deploy Ansible/Salt/Puppet/Chef

Bake your images, or upgrade the boxes

Eric Merritt = March 11, 2016 6/18

Erlang On NixOS

Side Effect Hell

Eric Merritt = March 11, 2016 7/18

Erlang On NixOS

ﬁ NixOS5

ic Merritt March 11, 20

What NixOS is

m Purely Functional Package Manager

m Linux Distribution based on the Nix Package Manager

Eric Merritt = March 11, 2016 9/18

Problems it solves

Directly Relevant
m Managed Via Files in a Git Repository
m Full dependency information

m Supports multiple versions of a package installed at the same time

Indirectly Relevant

m Upgrades are atomic
m Rollbacks

m Anyone can install packages

Eric Merritt | March 11, 2016

How it solves those problems

m Purely functional language to describe how to build packages and
their dependencies

m Build results only depend on declared inputs.

m Packages never change after they have been built.

Eric Merritt | March 11, 2016 11 /18

Erlang On NixOS

Store all packages in isolation from each other
/nix/store/2155rylrv22.... —renderproto —0.11.1.tar.bz2.

Paths contain a 160-bit cryptographic hash of all inputs used to build the
package

sources

libraries

compilers

A etc ...

Eric Merritt | March 11, 2016

Erlang On NixOS

Declarative System

{ config, lib, pkgs, ... }:
{
users.extraUsers.thorndyke = rec {
description = "Thorndyke system user”;
home = " /home/thorndyke"”;
createHome = true;
shell = "${pkgs.bash}/bin/bash”;
b
services .thorndyke = {
enable = true;
user = "thorndyke";

Eric Merritt | March 11, 2016 13 /18

Erlang On NixOS

Service Definition

{config,

Eric Merritt

pkgs, lib, ...}:

config = mklIf cfg.enable {
systemd . services .thorndyke = {

description =
"Start the thorndyke user under \${cfg.L
after = ["network.target” |;
wantedBy = ["multi—user.target” |;
serviceConfig.ExecStart =
""/var/setuid —wrappers/sudo —u \${cfg .
\${pkgs.thorndyke}/var/sunlight/thorndy

March 11, 2016 14 /18

Erlang On NixOS

Package Definition

{ stdenv, erlangPackages, bash,
nettools , erlang }:
erlangPackages.buildRebar3 {

name = "thorndyke —0.0.1";

src = ;

buildlnputs = [bash nettools erlang |;

erlangDeps = with erlangPackages; [elli jsx uri |;

installPhase =
runHook prelnstall
target="%out/var/thorndyke”
erlang="%${erlang}"
make PREFIX=\$target install

substituteAlllInPlace \$target/thorndyke/bin/thornd
runHook postlnstall

~

Eric Merritt | March 11, 2016 15 /18

Erlang On NixOS

Non Hex Packages

{stdenv, fetchFromGitHub, buildRebar3 }:

let
pkg = self: buildRebar3 rec {
name = "elli";
version = "1.0.4";

src = fetchFromGitHub {
owner = "knutin";

repo = "elli”

rev = "albf838b4223caf7faablbcbadac4b250215d2f

sha256 = "1ybflp7bqbl4cgd69qdx6rwdl4rlp7h4hiyst
}i
}i

in stdenv.lib.fix pkg

Eric Merritt | March 11, 2016 16 / 18

How We Did It

Build Support
m reads rebar.config and environment to build the dep structure
m symlinks in packages from the nix dependency environment

m rewrites rebar.config where it needs to

Package Support
m Pull down every package from Hex.pm

m Generate nix expressions for packages in dependency order using the
same dependency algo as rebar3

Eric Merritt | March 11, 2016 17 /18

Erlang On NixOS

References
m http://nixos.org
m https://github.com/erlang-nix/rebar3-nix-bootstrap
m https://github.com/erlang-nix/hex2nix

Eric Merritt | March 11, 2016 18 /18

