Concurrency + Distribution =
Availability + Scalability

Francesco Cesarini

francesco@erlang-solutions.com
www.erlang-solutions.com

@francescoC SOLUTIONS ne——

www.erlang-solutions.com

Chapter 13
Ch 13: Node Architecture

OREILLY"

Designing for
Scalability with

Francesco Cesarini & Steve Vinoski

www.erlang-solutions.com

Chapter 13

3: Distributed Architectures
4: Systems That Never Stop
) . Designing for
2 Scal!ng.Out _ Sca%r;b%hty with
6: Monitoring and Preemptive [aiciciCiiges
Support ase

\

\

\

OO0 00
> 3O IO 3

\

Concurrency

www.erlang-solutions.com

Mutable State Immutable State

| (

Problem 1 with mutable state:

“Your program crashes whilst
executing in the critical section...

www.erlang-solutions.com

Problem 2 with mutable state:

Where do you locate your state...

.ondon

www.erlang-solutions.com

Problem 3 with mutable state:

What happens if your network
connectivity fails...

&

www.erlang-solutions.com

Problem 1 with mutable state:

Your program crashes whilst
executing in the critical section...

| London

Your state does not get
corrupted.

www.erlang-solutions.com

Problem 2 with mutable state:

Where do you locate your state...

London

You do not Locate state,
you copy it.

www.erlang-solutions.com

Problem 3 with mutable state:

What happens if your network
connectivity fails...

London

Make sure your business
logic and databases handle
network splits!

Distributed Architectures

Clients

Front-end Node

Logic Node

Service Node

N7

7 -
NN
RPN
N\“W%mwwehww

P XX
..?.«..ﬁ@m.....,

SV RVZNIY ‘«.
SN ,é«\\i

/

N

Wy A’ N
e)

IX

\

‘\‘ A

s.?« .,.%M ..ﬂ« Qm‘

RO

N
NESTN

o
XN\

RS .% R\
3

N
-
—

7

www.erlang-solutions.com

2'60\/0

/a single vnode/partition

Dynamo

a ring with 32 partitions “'2'60/4

N\

hash(<<"artist">>,<<"REM">>)

2|60/2

hash(Sessionld1)

hash(Sessionld2)

www.erlang-solutions.com

Dynamo

Key Range

Vnodes

Erlang Node

www.erlang-solutions.com

Dynamo

www.erlang-solutions.com

Dynamo

www.erlang-solutions.com

Service
Bus

Service Bus

Peer to
Peer

Peer to
Peer

Networking

Clients

—————————————————

———————————————————

Networking

Email Clients

\
J www.erlang-solutions.com
\\‘
STEPS EVOLVING AROUND DISTRIBUTION .

Split up your system's functionality
into manageable, stand-alone
nodes.

Choose a distributed architectural
pattern.
Choose the network protocols your
nodes, node families, and clusters
will use when communicating with
each other.
Define your node interfaces, state
and data model.

Systems That Never
Stop

www.erlang-solutions.col

Fault

Tolerance

Client Client

Request Request Error

Request Request Error/Timeout

www.erlang-solutions.com

Resilience

Client Client

Request1 Error Request2 Reply

Request2 Reply

www.erlang-solutions.com

Reliability

Client Client Client

Request Request Reply

Request Request Reply

Request Request Reply

Sharing Data

www.erlang-solutions.com

Share
Nothing

Client1 Client2 Client1 nknown Client1
Login Request session Login
Login Login Request Unknown Login
session
Unknown

Login Login Request session Login

Buy

Buy

Client
Buy book

Client

Buy train set

Buy

Buy

www.erlang-solutions.com

Share
Something

Buy

Buy

Client
Buy book

Buy

Buy

Buy train set

Remove

Remove

www.erlang-solutions.com

Share

Everything

Remove book

Session1

book

Session1

train set

www.erlang-solutions.com

Network
Partitions

Session1

train set
book

Session1

www.erlang-solutions.com

Retr
Strategy

1 Client 2 Client

Request Request Reply

Request Reply Request {duplicate, Reply}

Consistency

Recovery Strategy
exactly
once at least
once at most
once

Availability

Reliability

Sharing Data

share

everything share

something

Availability

share
nothing

www.erlang-solutions.com

Trade-offs

www.erlang-solutions.com

STEPS EVOLVING AROUND AVAILABILITY,
CONSISTENCY & RELIABILITY

For every interface function in your
nodes, you need to pick a retry
strategy.

For all your data and state, pick
your sharing strategy across node
families, clusters and types, taking
into consideration the needs of
your retry strategy.

Scaling Out

Scaling
Vertically

Scaling
Horizontally

Recovery Strategy

>

o exactly

2| once at least

%)

S ONce 4t most
(&) once

Scalability

Availability

Sharing Data

share

everything share

something

Scalability

share
nothing

www.erlang-solutions.com

Trade-offs

www.erlang-solution

Capacify
Planning

Login Login

Sessionl Session2

www.erlang-solutions.com

Capacit
Planning

Clients
A

System

Reject

Load Regulation

Third Party API

www.erlang-solutions.com

- CAPACITY PLANNING -

Capacity planning is the design phase which guarantees
that your system can withstand the load it was built to
handle, and with time, scaling to handle increased
demand.

No single point of failure
Cluster blueprint for scalability
Load Regulation

Back Pressure

Monitoring and
Preemptive Support

Heterogeneous multi-core harc
here to stay

Different cores doing different things

»CPUs, GPUs, FPGA

Parallella Board 16 or 64 core Epiphany co-processor
Dual core ARM processor + FPGA Gigabit Ethernet

1GB RAM + MicroSD Card 2x USB ports + HDMI port

IJA‘AI.“IAI‘A‘IIA m--l‘: AR A% LA S I‘Al‘

E‘y Andreas Olofsson @ [Following]
ddaptieva

Erlang now runs on 32KB Epiphany thanks to
heroic efforts of Kostis and Magnus at
Uppsala...P2=epiphany:spawn(..)
mlang.se/presentation.p...

3 42 ESL2EMaTR0

X

www.erlang-solutions.com

The Fastest Computer in the World!

»Tianhe-2
»Chinese National University of Defence Technold

33.86 petaflops/s (November 20

16,000 Nodes, each with 2 lvy B
multicores and 3 Xeon Phis

3,120,000 x86 cores in total

www.erlang-solutions.com

The Fastest Computer in the World!

»Tianhe-2
»Chinese National University of Defence Technold

33.86 petaflops/s (November 20

16,000 Nodes, each with 2 lvy B
multicores and 3 Xeon Phis

3,120,000 x86 cores in total

www.erlang-solutions.com

Home Download WhatsApp Web FAQ Blog Contact

WhatsApp Blog English ~

1 million is so 2011

Happy 2012 everyone! e @

A few months ago we published a blog post that talked about our servers doing 1

million tcp connections on a single box: http://blog.whatsapp.com/?p=170

Today we have an update for those keeping score at home: we are now able to

easily push our systems to over 2 million tcp connections! 2.4m ‘

Like
jkb@c123$ sysctl kern.ipc.numopensockets kern.ipc.numopensockets:
2277845

Best part is that we are able to do it with plenty of CPU and memory to spare and

do it sustainably: Contribute to the WhatsApp

translation in your language.
CPU: 37.9% user, 0.0% nice, 13.6% system, 6.6% interrupt, 41.9% Let's make WhatsApp available to

idle Mem: 35G Active, 14G Inact, 18G Wired, 4K Cache, 9838M Buf, everyone in the world!
27G Free

This time we also wanted to share some more technical details with you about

hardware, OS and software:

www.erlang-solutions.com

The Road to 2 Million Websocket Connections in Phoenix

H 1700045
Simultaneous Users S
1999975
2.50e+6 1999984
2.00e+6
1 21 [1
P 22
1.50e+6| 3 23 { }
4 24 []
5 25 []
1.00e+6 [26 [|
7 27 [1 :
8 28 [1
500000 9 [29 []
10 [30 [1
ol1 128906 Tasks: 22, 150 thr; 2 running
0 100 200 300 400 500 Load average: 5.45 3.98

Uptime: 5 days, 11:17:13

seconds

If you have been paying attention on Twitter recently, you have likely seen some increasing numbers regarding the
number of simultaneous connections the Phoenix web framework can handle. This post documents some of the

techniques used to perform the benchmarks.

HOW IT STARTED

A couple of weeks ago | was trying to benchmark the number of connections and managed to get 1k connections on
my local machine. | wasn't convinced by the number so | posted in IRC to see if anyone had benchmarked Phoenix
channels. It turned out they had not, but some members of the core team found the 1k number | provided

suspiciously low. This was the beginning of the journey.

Split up your system's functionality
into manageable, stand-alone
nodes.

Decide what distributed
architectural pattern you are going
to use.

Decide what network protocols
your nodes, node families and
clusters will use when.
communicating with each other.
Define your node interfaces, state
and data model.
For every interface function in your
nodes, you need to pick a retry
strategy.

For all your data and state, pick
your sharing strategy across node
families, clusters and types, taking

alliu uadua 111UUCl.

5. Split up your system's functionality
into manageable, stand-alone
nodes.

6. For all your data and state, pick
your sharing strategy across node
families, clusters and types, taking
into consideration the needs of
your retry strategy.

7. Reiterate through steps 1, 2, 3,4, 5
& 6 until you have the trade-offs
which suit your specification.

8. Design your cluster blueprint,
looking at node ratios for scaling up
and down.

9. Indentify where to apply back-
pressure and load regulation.

10. Define your O&M approach,
defining system and business
alarms, logs and metrics.

THANK YOU!
Any gquestions?

francesco@erlang-solutions.com
www.erlang-solutions.com
@francescoC

OREILLY"

www.erlang-solutions.com

Designing for
Scalability with

IMPLEMENTING ROBUST,
FAULT-TOLERANT SYSTEMS

Francesco Cesarini & Steve Vinoski

Discount Code: authd
50% off the Early Release
40% off the printed copy

SOLUTIONS

