BUILD BIG WITH TINY
TOOLS: IMMUTABILITY,
CHECKSUMS, AND CRDTS

Scott Lystig Fritchie, Basho Japan
Erlang Factory 2016 San Francisco
2016-03-11 Friday

©

About Scott

- Senior software engineer @ Basho Japan, Tokyo

+ scott@basho.com, @slfritchie on Twitter

- Tech lead for Basho's distributed file store "Machi"

- Erlang infatuation since 1999

* Co-Chair of the ACM Erlang Workshop 2016, Nara, Japan

- | urge you to consider writing a paper for the workshop!

©

Outline

- A very brief introduction to

Machi - Let’'s make some music: an
allegory
» Append-only files compared
to write-once files + Machi and CRDTs
* Immutability changes » Machi and Checksums
everything

- Today’s development status
- What is chain replication?

©

Machi

“village” or “town”

Machi

- A distributed, fault tolerant,
write-once blob store with
file-like API

* Operate in strong
consistency mode or
eventual consistency mode

- Eventually consistent
files? Are you crazy?

Append-Only File Writing

[p1id 1394]

fben(”/tmp/foo’,
O WRONLY|O CREAT|O APPEND,
0666) = 14

The kernel is responsible for ordering all writes in
append-only fashion

Not Talking About Log-Structured
File Systems

» Sprite LFS
- Solaris/lllumos ZFS

+ VAOFS: A Verifiable Append-Only File System for Regulatory
Compliance

©

100% Append-Only Systems

- The Hadoop File System (HDFS)
- The Google File System (GFS)
- Windows Azure Storage (WAS)

- More blob store than file store

©

Machi: A File Store/Blob Store
Hybrid

+ File store-like API

- Files are ordered collection of bytes

- Random access at any byte offset

- Blob-store like behavior

- Server always determines "location" or “name”

- Location/name examples: file name + offset, opaque string

- Examples: WAS, Twitter Blobstore, Google Blobstore

©

Append-Only Vs. Write-Once

» Append-only files

- Writes ordered by time = writes ordered by offset
- Write-once files

- A byte/page is writable once

- Writes can happen in any time order!

©

Erlang Users Know Immutability

foo() ->
X = 42
X =X + I,

Guaranteed to fail, by design.

©

Immutability
Changes
Everything

Pat Helland, CIDR 2015

Immutability Changes Everything

Pat Helland
Salesforce.com
One Market Street, #300
San Francisco, CA 94105 USA
01(415) 546-5881
phelland @salesforce.com

ISTRACT

e is an incxorsble trend Sowards sioring and soading
mtable data. We neod immarabiliey 0 coordinate at a distance
we can afford iy, s sioeage pots chesp

& paper is simply an amuse-bouche on the repeated patierns of
iputing that leverage immutability, Climbing up and dows the
ipute stack roally does yield a sense of déjd ve all over again.

INTRODUCTION

rasn't that long ago that computation was cxpensive, disk
age was expensive, DRAM was expensive, bet coordination
b leaches was cheap. Now, all hese have changed using chesp
iputation (with masy.core), chesp commodity diks, and
» DRAM and SSD, while coordination with laaches gets
fer bocause lach Mtency loses Jots of inslraction opportenitics.

Next, we &scuss how the hardware folks have joined the party
leveraging these tncks in SSD and HDD. See Fgure

Finally, we look a1 some trade-offs with using i ble data.

Agp over kvnutatle Date:
L___AomendOntAoos | Aocon Facs hen Dwevs
[App Gererated DataSets Generate mmutatio Dats

can now afford 10 keep immutable coples of lots of data, and

payoll & reduced cocedination challenges.

More Storage, Distribution, & Ambiguity
Bave dscreasing sforape s the cost per terabyte of disk koepa
mping. This means we can keep lots of data for a long time.
have increasing distridulion as more and more data and work
spread aceons & greal dataace. Data within a datacenter socms
away”™, Data within a many-core chip may seem “far away™
have increasing anbiguity when trying 10 coordizate with
jems that are far away... more stuff has happened since you've
1 the news. Can you take action with incomplete kaowlodge?
| you wait for enosgh knowledge?

! Tartles All the Way Down [17]

varous technological arcas have evolved recently, they have
wondod 10 these trends of increasing stonge, Sstridution, and
tiguity by usisg immetable data i some very fun ways. We
explore how apps we immutability in their ongoing werk,
I apps gencraie mmmutable DataSets for Mter offine analyss,
r SQL can expose and pe i ble wmapah bow
sively parallel "Big Data™ work relios on immutable DataSets.
b leads w0 looking &t the ways s which scmantically
metable DataSets may be alicred while ining i b
1, we consider how updatability is layered atop the creation of
ri ble files via technigues like LSF (Log Structure File
ems), COW (Copy on Write), and LSM (Log Structured
e wees). We examine how replicated sad disribeted file
ems depend om immastability to eliminate anomalies.

s aticle is publishod under & Creative Comeons Altribation Liceme
pcloreativecommeons org Tcersas Sy L 0, whih permns

e arad repecsd, o wmy mediem s well allowing
erivative works, provided that you anbute ¢ ongnal work % the
whar(s) snd CIDR 2015

B Biessial Confoonce on lomovative Duta Systoms Rosoarch
CIDR "15) Jasaary 4.7, 2015, Asilomar, Califorma, USA.

E
L__lsrismmscow |l il o hoven
Repication of FiesTiocky
[—l Wi Undate Aromades
Wear Loveling on $50 Change via COW 10 Spved
Shingles on HDD Chanpe ve COW o Alow

Figere 1. immgtabilty is & ey archilectunsl concept & many layer
of he stack.

2. Accountants Don’t Use Erasers
Lots of computing can be characterized as “sppendoaly™. T
secton Jooks at some of the ways tis is commealy sccomplish

2.1 “Append-Only™ Computing

May kinds of computing are “Append-Oaly™. Observations
recorded focever (or for a loag time). Derved results
cakulated on demand (or peniodically pre<aloulated).

This is similar %o a database management systemn. Tramsact
logs recoed all the changes made 1o the datshase. High-spy
wppends are the cnly way % change the Jog. From ¢
perspective, the contents of the database hold a caching of
latest record valoes in the Jogs. The truth is the log. The databy
is 2 cache of & subsct of the log. That cachad sebsct happens %o
the latest valos of cach record and index value from e log

2.2 Accounting: Observed & Derived Facts
Accosntanty dou't use erasers or Bcy go W jail. AN entries &
ledger remain in the lodger. Cormections can dbe made but caly
makisg scw cotries i the Jedger. When & company’s quare
reselts are published, they include small comrections

previows quarter. Small fixes are OK! They are append-only, ©
Some entries describe observed facts. For example, receiviey
debit or credit against a checking acoount is am observed fact,

Some entries describe derived facts. Basod om the observatio
we can calculate something new. For example, amortized cap
experes based upon 2 rate asd 3 oot Another example o
current Bank account balance with applicd debins and credits.

g

Write-Once Register In Erlang

—-record(wor, {set=false :: boolean(),
val :: undefined|val type()

1) -

set (#wor{set=false}=WOR, Val) ->
WOR#wor {set=true, val=Val}.

get (#wor {set=false}) ->
undefined;

get (#wor {set=true, val=Val}) ->
{ok, Val}.

©

Why Write-Once Files?

- Maintaining time-oriented ops in a distributed system is hard
- Because time is hard

- Avoid “time”, use “space” instead

- Assign once: file name + offset + byte range size

- Enforce write-once behavior for every byte

- Actual write ops can be processed in any time order

©

Machi API (simplified)

—spec append chunk (
Prefix:string(),
Chunk :binary(),
gsum :binarye)) -
{ ok',{Fi1leName:string(),
Offset:non neg integer()}}
| error tuple().

©

Machi API (simplified)

—spec read chunk(
FileName:string(),
Offset :non neg integer(),
Size :non neg integer()) ->
{‘’ok’,{Chunk:binary(),
CSum :binary()}}
| error tuple().

©

WHAT IS CHAIN
REPLICATION?

M UCh MOre Scott Lystig Fritchie

Basho

About Chain
Replication
And Humming
Consensus

http://ricon.io/archive/2015/

©

http://ricon.io/archive/2015/index.php

_ Neil Conway o3l Following
neil_conway

Chain replication: strange that it is so well-
known among academics and yet seemingly
obscure to practitioners.

RSETWEETS ;AéORlTES m W 0 e m % . u

3:08 PM - 21 Oct 2015

Chain Replication Papers

- Van Renesse and Schneider. "Chain Replication for

Supporting High Throughput and Availability." USENIX OSDI.
Vol. 4. 2004.

- Bickford & Guaspari, "Formalizing Chain Replication”, tech
report, 2006.

- Bickford, "Veritying Chain Replication using Events", tech
report, 2006.

- Terrace and Freedman. "Object Storage on CRAQ: High-
Throughput Chain Replication for Read-Mostly Workloads."

©

Chain Replication Papers

» Van Renesse, Ho, and Schiper. "Byzantine chain replication."
Principles of Distributed Systems. Springer Berlin Heidelberg,
2012. 345-359.

- Abu-Libdeh, van Renesse, and Vigfusson. "Leveraging
sharding in the design of scalable replication protocols."
Proceedings of the 4th annual Symposium on Cloud
Computing. ACM, 2013.

©

Chain Replication Users

- FAWN
- CRAQ
» Synrc App Stack
- HibariDB
- Machi
- Hyperdex

* ... perhaps more? ...
- CORFU & CorfuDB

» ChainReaction

©

WRITE
Operation

Chain Replication On One Slide

ﬁq‘*’ %
HEAD MIDDLE TAIl HEAD MIDDLE TAI
Brick Brick — Brick Brick Brick Brick

» Variant of primary/secondary replication: strict chain order!

- Sequential read @ tail. Linearizable read @ all.
Dirty read @ head or middle.

©

;-ﬁg markcallaghan {x +& Foll

S @markcallaghan

@nell_conway write to front, read from the
back. The mullet of replication?

RETWEETS FAVORITE g
\.;‘" < ‘. ,i‘-;

2 1

The Other “One Slide”

©

WHY USE CHAIN
REPLICATION?

Cheap! Easy! Free! Kittens!

£
N
0'70
HEAD MIDDLE HEAD MIDDLE IAIl
Brick Brick Brick Brick

- “Cheap’: f+1 replicas to survive f failures.

WRITE READ
Operation Operation

"«ﬁa»

«Q/'\.

©

- “Easy”’: Strong consistency is a nice side-effect

- "Free": Anti-entropy is an under-valued side-effect

©

Cheap! Easy! Free! Kittens!

WHY IS MANAGING CHAIN
REPLICATION A PROBLEM?

Managing Chain Replication

- Screw up chain order -> screw up consistency
- “State of the art” isn't ideal
- Rub some Paxos/Raft/ZooKeeper/etcd on it.....

- The availability of your distributed system is limited by the
availability of the system’s manager!

- Don’t use SC system to manage an EC system like Riak or
EC-mode Machi

©

CONSENSUS AND
HUMMING IN THE IETF

RFC 7282

To reinforce that we do not vote, we have also adopted the
tradition of “humming”: When, for example, we have face-to-
face meetings and the chair of the working group wants to get a
“‘sense of the room”, instead of a show of hands, sometimes the
chair will ask for each side to hum on a particular question,
either “for” or "against”.

©

e

Once Upon A Time, There Were Some
Distributed Music Composers

ﬁ <X
< - i o
e \
T
b

About Our Music Composers

- Everyone follows strict rules for composition

- Voice leading, chord progression, rhythm, instrumentation...
- Need rough consensus on each measure of music

- All work in the same room ... unless they don't

- Small groups break out to rehearsal rooms. Or at coffee shop.

- For a few seconds. Or hours. Or years.

©

About The Composers’ Workflow

- Each measure of a manuscript is numbered

- Music is written only from beginning to end

* One measure at a time

 Blank measures will be removed by publisher, no worries
- Each measure is ranked for beauty, lyricism, etc.

- For lyricism, immediate earlier measures are important

- No mixing Happy Birthday + Thriller + Tijuana Taxi

©

Let’'s Simplify: Plain Chant

- a.k.a. Gregorian plainsong or Byzantine chant

* Monophonic

- No tritones ("diabolus in musica") because ... no chords!
- Strict voice leading rules

- Vocal only (no instrumentation to worry about)

©

Composer’s Workflow, Part 2

- Each composer acts independently
- All composers can hear humming in the same room
- But cannot hear humming in other rooms or coffee shop

- Each composer has a private manuscript to copy consensus
music measures

- All use indelible ink, impossible to change once written.

- Ignore anachronisms, e.g. music measures didn't exist in 6th

century
©

Composing A Measure Of Music

. Check who is in the room & music in earlier measures

. Check rules, tastes of composers in the room, ...

. Choose a note for the next measure and hum it.

. If unison, then all agree: write note in private manuscript.
. If not unison, then there's disagreement

- Leave the current measure blank, choose the next measure
number, go to step #1.

©

Interruptions, Disagreement, Etc.

 Each group in each room acts independently.

- |[f someone leaves the room? Write a new measure.

- If someone enters the room? Write a new measure.

- |f someone takes a nap in the room? Write a new measure.

- |If they try to (re)use an old measure number, scold them,
refuse the idea, and choose a hew number

©

-

-
.
.I

25

The Results Might Be...
 p

-

AR -
o 3

3

S
B o gy

e
S

n

24

b

"-

Rt e

g ¢ 2w A S e o <2, A

WHAT IF THE COMPOSERS
ARE DEAF?

For Example: Ludwig Von Beethoven

Use Two Manuscripts!

- “Public” manuscript: write here instead of humming

- “Listen” by reading public manuscripts

- Anyone can read and write a public manuscript
- Helps us with slow/sleeping composers....

- "Private” manuscript: same use as our allegory

- Anyone can read from it, only the owner can write to it

©

WHAT IF THE COMPOSERS
ARE COMPUTERS
PROGRAMMED BY...
ELVES?

©

Music To Algorithm

- Measure number -> epoch number

- Epoch = time period when chain metadata is stable

- Chain metadata: dynamic membership, chain order, etc.

- Manuscript -> KV store of write-once registers (“Projection Store”)
+ Key = epoch number + (public | private)

- Value = projection data structure

©

Music To Algorithm

- A computer writes to all available public projection stores

- All available public projections at epoch number E are
equal -> “humming” in unison for epoch number E

- Private projection store remains writable only by owner

- After writing highest private epoch number, use that
projection for subsequent operation.

©

Different Modes Of Operation

- Strong consistency: Chain length >= majority quorum size
- Minimum length prevents split brain syndrome
- Eventual consistency: Chain length = 1 is OK!

- Machi files are write-once registers at byte level, all Machi
file ops are CRDT-like, always mergeable

- Humming Consensus can merge and repair chains after
network partition

©

= B ABc ABC
y —
\\ @ <———p<é7\ 8,C 5.C
" @ ik @i
Discord..., RORLL |
\Z B,C)'A B,CJA B,C)'A

No conflict at epoch 11 ... until the net-split heals

©

Humming Consensus Summary

- Built upon write-once registers: the “projection store”

- If you hear unison music (i.e. read identical values from public
projection stores), then you have to consider the change.

- If you like the change, accept it & write it to your private store.
- |f you don'’t like the change (safety violation!), propose a new
change in a new epoch. Always have the option to ignore a

bad ideas/definitely unsafe chain configuration.

* “Hearing unison” may change to discord after a network
partition heals. The fix: suggest new change in new a epoch.

©

g

RS en e an S 2

4

5
5

o

ur

<
>
O
L
>
Z
O
O
T
O
_|
n

CRDT

- Conflict-free Replicated Data Type: https://en.wikipedia.org/
wiki/Conflict-free replicated data type

- Basic rules: Commutative, Associative, Idempotent

- “If all updates are received, applying the updates in any order
gives the same final result.”

©

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

CRDTs in Machi

- Informal use #1: unique file name + offset assignments create
CRDT-like, always mergeable files

- Formal use #2: use “map” of “last-write-wins registers” to
broadcast up/down visibility status to all chain members

- Map key = observing server’s name
- Map value = list of servers believed down by observer

- riak_dt library: https://github.com/basho/riak dt

©

https://github.com/basho/riak_dt

Machi’s “Fitness” Service

- Each participant has fitness service

» Fitness service queries all projection stores, any failures are
added to local “| think it’s down” list

- CRDT map of down lists are spammed to all other participants

- Convert map values -> digraph, then estimate where network
partition(s) are located & effect (1-way, 2-way).

- New chain order removes the worst-affected servers

©

MACHI AND CHECKSUMS:
AN ANTI-ENTROPY STORY

Clients Provide The Checksum

—spec append chunk (
Prefix:string(),
Ehunk :binarv(),
CSum :binary()) ->
e 0Kk ,{FileName:string(),
Offset:non neg integer()}}
| error tuple().

©

How Machi Uses Checksums

» Server verifies checksum at initial append/write time
- Server “scrubs” local data on disk, re-veritying checksums
- Similar to RAID array parity scrub/sweep/scan

- Use Merkle-style trees of checksum data for file replication

©

Merkle Tree (Hash Tree)

- Leaf nodes: hash of original
data block

- [nterior nodes: hash of
concatenation of child
hashes

- Sensitive to data block
contents and also tree
shape

ROOT

hash(A, B)

A

hash(C, D)

/

\

hash(E, F)

B

hash(003)

E/ \F

T

., D
hash(001) hash(002)
Data Data
Block Block
001 002

Data
Block
003

©

hash(004)

T

Data
Block
004

Merkle Trees Are Great, But...

- Good news: You
have 220 TBytes of
data on this modern,
high-density server.

- Bad news: You must

read all 220 TBytes
of data to create a
single Merkle tree.

Can we find a short-cut?

©

Standard Merkle Tree Vs. Machi’s

- Leaf nodes: hash of
original data block

- Interior nodes: hash of
concatenation of child
hashes

- |/O required is all original
data

- Leaf nodes: hash of

concatenation of
checksums in block range

- Interior nodes: hash of

concatenation of child
hashes

- 1/O required is all

checksums (~32 bytes
each)

Leat Node Representation

- Unwritten bytes: <<Length:64, Offset:32, 0>>

- Written bytes: <<Length:64, Offset:32, CSum/binary>>
- Trimmed bytes: <<Length:64, Offset:32, 1>>

- Trimmed = garbage collected & no longer accessible

- Valid transition: unwritten -> written -> trimmed

- Valid transition: unwritten -> trimmed

©

TODAY’S DEVELOPMENT
STATUS

Not Finished Yet

P s
E A% 0]
q '._' A\

Today’s Humming Consensus

- Fully implemented (Erlang, service-agnostic (mostly))
- Works well in network partition simulator

- Property-based testing has been invaluable, with &
without using QuickCheck

- Hasn't run much in The Real World yet!

- Source & docs: https://github.com/basho/machi

©

https://github.com/basho/machi

Supervision Tree

machi_sup

machi_flu_sup machi_lifecycle_mgr

flusup_f1

f1_chmgr f1_filename_mgr f1_flu1

subsup <0.120.0> f1_metadata_mgr_sup f1_file_proxy_sup f1_pstore f1_fitness

<0.112.0> f1 <0.122.0> f1_metadata_mgr_1 <0.144.0>
|

Supervision Tree

machi_sup

I

machi_flu_sup

machi_lifecycle_mgr

flusup_f1

f1_metadata_mgr_sup

f1_file_proxy sup

f1_metadata_magr_1

©

f1_pstore

f1_fitness

<0.144.0>

Supervision Tree

m
machi_flu_sup
ﬂusulp_f‘l
f1 _cr\\mgr f1 _filena‘me_mgr f1_flu1_subsup <0.120.0> f1 _metadatz
<0.112.0> f\‘I <0.122.0> f1_metadat

©

The greatest
science fiction writer of the
mogogemnm 30(

ROBERTA.

A HARSH |
_ MISTRESS |

Hugo Aw 1w]n'wr!
f livertarian revolu

Property-Based Testing: Outline

- Each appl/library/function has its invariants
- |ldentify those invariants! These are your properties.
- Make the invariants executable

- Now you’re flexible: plug these functions into EUnit,
Common Test, PropEr, QuickCheck, etc.

- Check invariants at runtime (probes, assertions) and/or
after the fact (e.g., post-run analysis of event log)

©

Invariants For Chain Replication

- Machi-style:
- Strict separation: “in sync” prefix, “out of sync/repairing” suffix
- Never re-order “in sync” portion of chain
- Move “in sync” -> “repairing” at any time
- Move “repairing” -> “in sync” only after repair effort is OK

- Move “repairing” -> “in sync” only to end of in sync list

©

Network Partition Simulator Tests

* One-way network partitions: A -> B fails but B -> A is OK
- Partition definition: [[FromServer, ToServer}, ...]
- List may remain constant or constantly/randomly change

- Run Humming Consensus in variable partitions (“shake the
snow globe” random period), then in a fixed partition list.

- Wait for stable & unanimous chain(s). Fail if never stable.

- Check invariants in activity log afterward: chain order, etc.

©

Thank You!

github.com/basho/machi

https://github.com/basho/machi/tree/master/doc

<X
ﬁ) o
e \
T

b

https://github.com/basho/machi
https://github.com/basho/machi/tree/master/doc

REFERENCES AND
CREDITS

For More Information

Source code repo: https://github.com/basho/machi/

Docs: https://github.com/basho/machi/tree/master/doc

Scott’s Ricon 2015 presentation on Humming Consensus: http://ricon.io/archive/2015/index.php

Chain replication and CORFU: section 11 of https://github.com/basho/machi/blob/
95437c2f0b6ce2eec9824a44708217a266e880b6/doc/high-level-machi.pdf also, that paper’s bibliography

On Consensus and Humming in the IETF: https://www.ietf.org/rfc/rfc7282.txt

Elastic Replication: https://www.cs.cornell.edu/projects/quicksilver/public _pdfs/er-socc.pdf

The Part-time Parliament: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.2111 &rank=1

©

https://github.com/basho/machi/
https://github.com/basho/machi/tree/master/doc
http://ricon.io/archive/2015/index.php
https://github.com/basho/machi/blob/95437c2f0b6ce2eec9824a44708217a266e880b6/doc/high-level-machi.pdf
https://www.ietf.org/rfc/rfc7282.txt
https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/er-socc.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.2111&rank=1

For More Information

HDFS: https://en.wikipedia.org/wiki/Apache Hadoop#HDFS

QFS: https://en.wikipedia.org/wiki/Quantcast File System

WTF: http://arxiv.org/abs/1509.07821

Preprint of "The Design and Implementation of the Wave Transactional Filesystem"

SeaweedFS: https://github.com/chrislusf/seaweedfs

The original allegory: http://www.snookles.com/slf-blog/2015/03/01/on-humming-consensus-an-allegory/

Immutability Changes Everything: http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paperi6.pdf

©

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/Quantcast_File_System
http://arxiv.org/abs/1509.07821
https://github.com/chrislusf/seaweedfs
http://www.snookles.com/slf-blog/2015/03/01/on-humming-consensus-an-allegory/
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

Image Credits

Composers: http://blog.mymusictheory.com/wp-content/uploads/2012/12/composers-mix-529x300.jpg

Neil Conway: https://twitter.com/neil_conway/status/656713576422379520

Mark Callaghan: https://twitter.com/markcallaghan/status/656810474365841410

Chain replication diagram: https://github.com/hibari/hibari-doc

Beethoven: https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Beethoven.jpg/399px-Beethoven.jpg
Monty Python: http://images4.static-bluray.com/movies/covers/23375_front.jpg

Under construction: https://github.com/h5bp/lazyweb-requests/issues/99

©

inlein book+modification: Orb Books cover, 1997 (?)

T L S S) ST ™ cor
R 3 ~ o
" "!f - Y o
- o

https://en.wikipedia.org/wiki/Merkle_tree
http://www.cnblogs.com/fxjwind/archive/2012/06/08/2541818.html

