
BUILD BIG WITH TINY
TOOLS: IMMUTABILITY,

CHECKSUMS, AND CRDTS
Scott Lystig Fritchie, Basho Japan

Erlang Factory 2016 San Francisco
 2016-03-11 Friday

About Scott

• Senior software engineer @ Basho Japan, Tokyo

• scott@basho.com, @slfritchie on Twitter

• Tech lead for Basho's distributed file store "Machi"

• Erlang infatuation since 1999

• Co-Chair of the ACM Erlang Workshop 2016, Nara, Japan

• I urge you to consider writing a paper for the workshop!

Outline

• A very brief introduction to
Machi

• Append-only files compared
to write-once files

• Immutability changes
everything

• What is chain replication?

• Let’s make some music: an
allegory

• Machi and CRDTs

• Machi and Checksums

• Today’s development status

Machi
“village” or “town”

Machi

• A distributed, fault tolerant,
write-once blob store with
file-like API

• Operate in strong
consistency mode or
eventual consistency mode

• Eventually consistent
files? Are you crazy?

Append-Only File Writing
[pid 1394]
open(“/tmp/foo",
 O_WRONLY|O_CREAT|O_APPEND,
 0666) = 14

The kernel is responsible for ordering all writes in
append-only fashion

Not Talking About Log-Structured
File Systems

• Sprite LFS

• Solaris/Illumos ZFS

• VAOFS: A Verifiable Append-Only File System for Regulatory
Compliance

100% Append-Only Systems

• The Hadoop File System (HDFS)

• The Google File System (GFS)

• Windows Azure Storage (WAS)

• More blob store than file store

Machi: A File Store/Blob Store
Hybrid

• File store-like API

• Files are ordered collection of bytes

• Random access at any byte offset

• Blob-store like behavior

• Server always determines "location" or “name"

• Location/name examples: file name + offset, opaque string

• Examples: WAS, Twitter Blobstore, Google Blobstore

Append-Only Vs. Write-Once

• Append-only files

• Writes ordered by time = writes ordered by offset

• Write-once files

• A byte/page is writable once

• Writes can happen in any time order!

Erlang Users Know Immutability

foo() ->
 X = 42,
 X = X + 1.

Guaranteed to fail, by design.

Immutability
Changes

Everything
Pat Helland, CIDR 2015

Write-Once Register In Erlang
-record(wor,{set=false :: boolean(),
 val :: undefined|val_type()
}).

set(#wor{set=false}=WOR, Val) ->
 WOR#wor{set=true, val=Val}.

get(#wor{set=false}) ->
 undefined;
get(#wor{set=true, val=Val}) ->
 {ok, Val}.

Why Write-Once Files?

• Maintaining time-oriented ops in a distributed system is hard

• Because time is hard

• Avoid “time”, use “space” instead

• Assign once: file name + offset + byte range size

• Enforce write-once behavior for every byte

• Actual write ops can be processed in any time order

Machi API (simplified)

-spec append_chunk(
 Prefix:string(),
 Chunk :binary(),
 CSum :binary()) ->
 {'ok',{FileName:string(),
 Offset:non_neg_integer()}}
 | error_tuple().

Machi API (simplified)

-spec read_chunk(
 FileName:string(),
 Offset :non_neg_integer(),
 Size :non_neg_integer()) ->
 {‘ok’,{Chunk:binary(),
 CSum :binary()}}
 | error_tuple().

WHAT IS CHAIN
REPLICATION?

Much More
About Chain
Replication

And Humming
Consensus

http://ricon.io/archive/2015/

http://ricon.io/archive/2015/index.php

Chain Replication Papers
• Van Renesse and Schneider. "Chain Replication for

Supporting High Throughput and Availability." USENIX OSDI.
Vol. 4. 2004.

• Bickford & Guaspari, "Formalizing Chain Replication", tech
report, 2006.

• Bickford, "Verifying Chain Replication using Events", tech
report, 2006.

• Terrace and Freedman. "Object Storage on CRAQ: High-
Throughput Chain Replication for Read-Mostly Workloads."

Chain Replication Papers

• Van Renesse, Ho, and Schiper. "Byzantine chain replication."
Principles of Distributed Systems. Springer Berlin Heidelberg,
2012. 345-359.

• Abu-Libdeh, van Renesse, and Vigfusson. "Leveraging
sharding in the design of scalable replication protocols."
Proceedings of the 4th annual Symposium on Cloud
Computing. ACM, 2013.

Chain Replication Users

• FAWN

• CRAQ

• HibariDB

• Hyperdex

• CORFU & CorfuDB

• ChainReaction

• Synrc App Stack

• Machi

• … perhaps more? …

Chain Replication On One Slide

• Variant of primary/secondary replication: strict chain order!

• Sequential read @ tail. Linearizable read @ all.  
Dirty read @ head or middle.

The Other “One Slide”

WHY USE CHAIN
REPLICATION?

Cheap! Easy! Free! Kittens!

• “Cheap”: f+1 replicas to survive f failures.

• “Easy”: Strong consistency is a nice side-effect

• “Free": Anti-entropy is an under-valued side-effect

Cheap! Easy! Free! Kittens!

WHY IS MANAGING CHAIN
REPLICATION A PROBLEM?

Managing Chain Replication

• Screw up chain order -> screw up consistency

• “State of the art” isn't ideal

• Rub some Paxos/Raft/ZooKeeper/etcd on it…..

• The availability of your distributed system is limited by the
availability of the system’s manager!

• Don’t use SC system to manage an EC system like Riak or
EC-mode Machi

CONSENSUS AND
HUMMING IN THE IETF

RFC 7282

To reinforce that we do not vote, we have also adopted the
tradition of “humming”: When, for example, we have face-to-
face meetings and the chair of the working group wants to get a
“sense of the room”, instead of a show of hands, sometimes the
chair will ask for each side to hum on a particular question,
either “for” or “against”.

Once Upon A Time, There Were Some
Distributed Music Composers

About Our Music Composers

• Everyone follows strict rules for composition

• Voice leading, chord progression, rhythm, instrumentation…

• Need rough consensus on each measure of music

• All work in the same room ... unless they don't

• Small groups break out to rehearsal rooms. Or at coffee shop.

• For a few seconds. Or hours. Or years.

About The Composers’ Workflow
• Each measure of a manuscript is numbered

• Music is written only from beginning to end

• One measure at a time

• Blank measures will be removed by publisher, no worries

• Each measure is ranked for beauty, lyricism, etc.

• For lyricism, immediate earlier measures are important

• No mixing Happy Birthday + Thriller + Tijuana Taxi

Let’s Simplify: Plain Chant

• a.k.a. Gregorian plainsong or Byzantine chant

• Monophonic

• No tritones ("diabolus in musica") because … no chords!

• Strict voice leading rules

• Vocal only (no instrumentation to worry about)

Composer’s Workflow, Part 2
• Each composer acts independently

• All composers can hear humming in the same room

• But cannot hear humming in other rooms or coffee shop

• Each composer has a private manuscript to copy consensus
music measures

• All use indelible ink, impossible to change once written.

• Ignore anachronisms, e.g. music measures didn't exist in 6th
century

Composing A Measure Of Music

1. Check who is in the room & music in earlier measures

2. Check rules, tastes of composers in the room, …

3. Choose a note for the next measure and hum it.

4. If unison, then all agree: write note in private manuscript.

5. If not unison, then there's disagreement

• Leave the current measure blank, choose the next measure
number, go to step #1.

Interruptions, Disagreement, Etc.

• Each group in each room acts independently.

• If someone leaves the room? Write a new measure.

• If someone enters the room? Write a new measure.

• If someone takes a nap in the room? Write a new measure.

• If they try to (re)use an old measure number, scold them,
refuse the idea, and choose a new number

The Results Might Be...

WHAT IF THE COMPOSERS
ARE DEAF?

For Example: Ludwig Von Beethoven

Use Two Manuscripts!

• “Public” manuscript: write here instead of humming

• “Listen” by reading public manuscripts

• Anyone can read and write a public manuscript

• Helps us with slow/sleeping composers….

• “Private” manuscript: same use as our allegory

• Anyone can read from it, only the owner can write to it

WHAT IF THE COMPOSERS
ARE COMPUTERS

PROGRAMMED BY…
ELVES?

Music To Algorithm

• Measure number -> epoch number

• Epoch = time period when chain metadata is stable

• Chain metadata: dynamic membership, chain order, etc.

• Manuscript -> KV store of write-once registers (“Projection Store”)

• Key = epoch number + (public | private)

• Value = projection data structure

Music To Algorithm

• A computer writes to all available public projection stores

• All available public projections at epoch number E are
equal -> “humming” in unison for epoch number E

• Private projection store remains writable only by owner

• After writing highest private epoch number, use that
projection for subsequent operation.

Different Modes Of Operation

• Strong consistency: Chain length >= majority quorum size

• Minimum length prevents split brain syndrome

• Eventual consistency: Chain length = 1 is OK!

• Machi files are write-once registers at byte level, all Machi
file ops are CRDT-like, always mergeable

• Humming Consensus can merge and repair chains after
network partition

No conflict at epoch 11 … until the net-split heals

Humming Consensus Summary
• Built upon write-once registers: the “projection store”

• If you hear unison music (i.e. read identical values from public
projection stores), then you have to consider the change.

• If you like the change, accept it & write it to your private store.

• If you don’t like the change (safety violation!), propose a new
change in a new epoch. Always have the option to ignore a
bad ideas/definitely unsafe chain configuration.

• “Hearing unison” may change to discord after a network
partition heals. The fix: suggest new change in new a epoch.

MACHI AND CRDTS

C R D T

• Conflict-free Replicated Data Type: https://en.wikipedia.org/
wiki/Conflict-free_replicated_data_type

• Basic rules: Commutative, Associative, Idempotent

• “If all updates are received, applying the updates in any order
gives the same final result.”

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

CRDTs in Machi

• Informal use #1: unique file name + offset assignments create
CRDT-like, always mergeable files

• Formal use #2: use “map” of “last-write-wins registers” to
broadcast up/down visibility status to all chain members

• Map key = observing server’s name

• Map value = list of servers believed down by observer

• riak_dt library: https://github.com/basho/riak_dt

https://github.com/basho/riak_dt

Machi’s “Fitness” Service

• Each participant has fitness service

• Fitness service queries all projection stores, any failures are
added to local “I think it’s down” list

• CRDT map of down lists are spammed to all other participants

• Convert map values -> digraph, then estimate where network
partition(s) are located & effect (1-way, 2-way).

• New chain order removes the worst-affected servers

MACHI AND CHECKSUMS:
AN ANTI-ENTROPY STORY

Clients Provide The Checksum

-spec append_chunk(
 Prefix:string(),
 Chunk :binary(),
 CSum :binary()) ->
 {'ok',{FileName:string(),
 Offset:non_neg_integer()}}
 | error_tuple().

How Machi Uses Checksums

• Server verifies checksum at initial append/write time

• Server “scrubs” local data on disk, re-verifying checksums

• Similar to RAID array parity scrub/sweep/scan

• Use Merkle-style trees of checksum data for file replication

Merkle Tree (Hash Tree)

• Leaf nodes: hash of original
data block

• Interior nodes: hash of
concatenation of child
hashes

• Sensitive to data block
contents and also tree
shape

Merkle Trees Are Great, But…

• Good news: You
have 220 TBytes of
data on this modern,
high-density server.

• Bad news: You must
read all 220 TBytes
of data to create a
single Merkle tree.

Can we find a short-cut?

Standard Merkle Tree Vs. Machi’s

• Leaf nodes: hash of
original data block  

• Interior nodes: hash of
concatenation of child
hashes

• I/O required is all original
data  

• Leaf nodes: hash of
concatenation of
checksums in block range

• Interior nodes: hash of
concatenation of child
hashes

• I/O required is all
checksums (~32 bytes
each)

Leaf Node Representation

• Unwritten bytes: <<Length:64, Offset:32, 0>>

• Written bytes: <<Length:64, Offset:32, CSum/binary>>

• Trimmed bytes: <<Length:64, Offset:32, 1>>

• Trimmed = garbage collected & no longer accessible

• Valid transition: unwritten -> written -> trimmed

• Valid transition: unwritten -> trimmed

TODAY’S DEVELOPMENT
STATUS

Not Finished Yet

Today’s Humming Consensus

• Fully implemented (Erlang, service-agnostic (mostly))

• Works well in network partition simulator

• Property-based testing has been invaluable, with &
without using QuickCheck

• Hasn't run much in The Real World yet!

• Source & docs: https://github.com/basho/machi

https://github.com/basho/machi

Supervision Tree

Supervision Tree

Supervision Tree

Property-Based Testing: Outline

• Each app/library/function has its invariants

• Identify those invariants! These are your properties.

• Make the invariants executable

• Now you’re flexible: plug these functions into EUnit,
Common Test, PropEr, QuickCheck, etc.

• Check invariants at runtime (probes, assertions) and/or
after the fact (e.g., post-run analysis of event log)

Invariants For Chain Replication

• Machi-style:

• Strict separation: “in sync” prefix, “out of sync/repairing” suffix

• Never re-order “in sync” portion of chain

• Move “in sync” -> “repairing” at any time

• Move “repairing” -> “in sync” only after repair effort is OK

• Move “repairing” -> “in sync” only to end of in sync list

Network Partition Simulator Tests

• One-way network partitions: A -> B fails but B -> A is OK

• Partition definition: [{FromServer, ToServer}, …]

• List may remain constant or constantly/randomly change

• Run Humming Consensus in variable partitions (“shake the
snow globe” random period), then in a fixed partition list.

• Wait for stable & unanimous chain(s). Fail if never stable.

• Check invariants in activity log afterward: chain order, etc.

github.com/basho/machi
https://github.com/basho/machi/tree/master/doc

Thank You!

https://github.com/basho/machi
https://github.com/basho/machi/tree/master/doc

REFERENCES AND
CREDITS

For More Information

• Source code repo: https://github.com/basho/machi/

• Docs: https://github.com/basho/machi/tree/master/doc

• Scott’s Ricon 2015 presentation on Humming Consensus: http://ricon.io/archive/2015/index.php

• Chain replication and CORFU: section 11 of https://github.com/basho/machi/blob/
95437c2f0b6ce2eec9824a44708217a266e880b6/doc/high-level-machi.pdf also, that paper’s bibliography

• On Consensus and Humming in the IETF: https://www.ietf.org/rfc/rfc7282.txt

• Elastic Replication: https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/er-socc.pdf

• The Part-time Parliament: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.2111&rank=1

https://github.com/basho/machi/
https://github.com/basho/machi/tree/master/doc
http://ricon.io/archive/2015/index.php
https://github.com/basho/machi/blob/95437c2f0b6ce2eec9824a44708217a266e880b6/doc/high-level-machi.pdf
https://www.ietf.org/rfc/rfc7282.txt
https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/er-socc.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.2111&rank=1

For More Information

• HDFS: https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS

• QFS: https://en.wikipedia.org/wiki/Quantcast_File_System

• WTF: http://arxiv.org/abs/1509.07821

• Preprint of "The Design and Implementation of the Wave Transactional Filesystem"

• SeaweedFS: https://github.com/chrislusf/seaweedfs

• The original allegory: http://www.snookles.com/slf-blog/2015/03/01/on-humming-consensus-an-allegory/

• Immutability Changes Everything: http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/Quantcast_File_System
http://arxiv.org/abs/1509.07821
https://github.com/chrislusf/seaweedfs
http://www.snookles.com/slf-blog/2015/03/01/on-humming-consensus-an-allegory/
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

Image Credits

• Composers: http://blog.mymusictheory.com/wp-content/uploads/2012/12/composers-mix-529x300.jpg

• Neil Conway: https://twitter.com/neil_conway/status/656713576422379520

• Mark Callaghan: https://twitter.com/markcallaghan/status/656810474365841410

• Chain replication diagram: https://github.com/hibari/hibari-doc

• Beethoven: https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Beethoven.jpg/399px-Beethoven.jpg

• Monty Python: http://images4.static-bluray.com/movies/covers/23375_front.jpg

• Under construction: https://github.com/h5bp/lazyweb-requests/issues/99

Image Credits

• Merkle hash tree diagram: http://www.cnblogs.com/fxjwind/archive/2012/06/08/2541818.html

• Heinlein book+modification: Orb Books cover, 1997 (?)

• Scott’s photo library

https://en.wikipedia.org/wiki/Merkle_tree
http://www.cnblogs.com/fxjwind/archive/2012/06/08/2541818.html

