
 P. Montens – EFL Brussels Jan. 2016

Erlang/OTP In the wild: a
governmental web application

Erlang Factory Lite Brussels 2016
Pieterjan Montens

 P. Montens – EFL Brussels Jan. 2016

// Introduction

● A little about myself
● What the application is and what it does

● How it started
● How it evolved
● What the benefits of using Erlang/OTP were
● In hindsight…

● Conclusion

And a demo somewhere in between

 P. Montens – EFL Brussels Jan. 2016

// Intro : A little about me

● Pieterjan Montens
– born in Bruges, grew up in the East Cantons, lives in

Liège, works in Brussels

● Jurist & self-taught software & system « engineer »
● Merged interest for IT, pleasure of building stuff

and the desperate state of justice computerization
● Using Erlang/OTP since 2008, in Belgium &

Switzerland
● Works at the Council of State in Brussels,

occasional freelancer/consultant

 P. Montens – EFL Brussels Jan. 2016

// Intro : the application

 P. Montens – EFL Brussels Jan. 2016

// Intro : What the application is & does

● e-proceedings platform, where lawyers and the court
exchange documents electronically

● Sends e-mails, notifies urgent procedures via sms, has
plenty of services, multiple browser/platform support,
no java, prolog, eID authentication and signatures, ...

● May seem easy, and everyone thought it would be,
but …

● Erlang delivered, and then some
● Achievement : application concepts transcribed in a

Royal Decree

 P. Montens – EFL Brussels Jan. 2016

// Intro : What the application is & does : Royal Decree

http://www.etaamb.be/fr/2014000018

 P. Montens – EFL Brussels Jan. 2016

// Intro : What the application is & does : the « but »

But…
● Complex access hierarchy and logic : some can see and/or sign, others can't or only partially,

not always at the same time, not always for the same reasons, « your mileage may vary »
● Judiciary logic (it's logic except when it's not)
● E-mail notifications, SMS notification
● Specific business intelligence, jurisprudential procedure knowledge in the minds of experts

who spend their lives honing and complexifying it
● Your users are 90 % lawyers, 10 % common people, with little or no IT background
● Electronic signatures are mandatory (and rightfully so)
● 24/7 operation
● Private data, strictly confidential information (enterprise IP, protected personal data, ...)
● Multiple interfaces, interfacings
● GUI's: at least 2
● Credibility of the institution is at stake
● Reality check : You do Q&A, support, maintenance & future develoments

How it started

 P. Montens – EFL Brussels Jan. 2016

// How it started 1 : the context

● State of justice computerization
– Millions lost in failed attempts (phoenix)

– Cut and paste : paper & scissors

– Lost in time

– Just yesterday, in 2016, ...

● Initial requirement : something simple to exchange
files. In a secure way, for jurists.

● Developer gets “irrationally adventurous*” : uses
Erlang/OTP

* He wasn't, though many benefits occured after the fact

 P. Montens – EFL Brussels Jan. 2016

// How it started 2 : hard

● Why Erlang ? (The good choice)
– Step up from Php : less scripting, more programming
– Joe Armstrong's book: mind bender.

● Joe's anagram example

– Erlang language expressiveness

● Why an Erlang web framework ? (The not so good
choice)
– Still good : Fast prototyping (3 months)
– Bad : Limiting, working around it rather than with it
– Hand-holding : you don't need/want to know OTP !
– Erlang is not a templating language

> Code Interlude <

Programming Erlang, by Joe Armstrong

perms([]) -> [[]];

perms(L) ->

[[H|T] || H <- L, T <- perms(L--[H])].

1> lib_misc:perms("123").

["123","132","213","231","312","321"]

2> lib_misc:perms("cats").

["cats", "cast", "ctas", "ctsa", "csat", "csta", "acts",
"acst","atcs", "atsc", "asct", "astc", "tcas", "tcsa", "tacs",
"tasc","tsca", "tsac", "scat", "scta", "sact", "satc", "stca",
"stac"]

 P. Montens – EFL Brussels Jan. 2016

// How it started 3 : how it looked

 P. Montens – EFL Brussels Jan. 2016

// How it started 4 : early benefits

Early benefits :
● Refactoring is fun (pattern matching & atoms)
● Update application code & mnesia data

structures without losing data, from day 1
● Migration to separate OTP applications,

mochiweb server, true parallelism
● Organic evolution to quasi-DSL, improved code

re-use, simplification

 P. Montens – EFL Brussels Jan. 2016

// How it started 5 : refactoring web interface calls

● Central column: web
API

● On the left: old,
monolithic server
application calls

● On the right: rpc casts,
synchronous and
asynchronous calls and
yields to a dynamic
simple_one_for_one
OTP gen_server
instance

How it evolved

 P. Montens – EFL Brussels Jan. 2016

// How it evolved 1 : the birth of a platform

● The application isn't just a server. It's a platform.
A domain specific database.

● Multiple services : REST (HATEOAS) API,
sockets, e-mails, sms, dropbox-like client, …

● Two layers (independent OTP applications),
distributed application core

● Web clients, simple & efficient : HTML, JS, PHP,
CSS
– Functional Js is fun : promises, web workers, web

sockets, ...

Demo break

 P. Montens – EFL Brussels Jan. 2016

// How it evolved 2 : screen map

 P. Montens – EFL Brussels Jan. 2016

// How it evolved 3 : where it is now

● 5 years in development, 2 years in service
● Continuous development

– Short iterations, fast reaction time, scrum-style
– eunit
– Gui's take a long time to make

● Interest in many forms, from many actors
● Electronic signature support with eID in Firefox, Chrome, Safari,

Edge
– in-house C# IE plug-in, Firefox crypto.signtext mess (pkcs#7)
– Estonian eID software team does a great job
– First open-source project of the CoS: xmldsig_js (XML-DSig)

● Stability : first year, no downtime. .

 P. Montens – EFL Brussels Jan. 2016

// How it evolved 4 : what will/could come now

● Better document generation
● Cloud-like services
● Integration with 3rd parties
● GUI improvements
● Improved

cluster
operation

 P. Montens – EFL Brussels Jan. 2016

// How it evolved 5 : common problems & cause

● User error
– Software must mitigate risks and consequences

(checks, rollbacks)

● Developer error
– Deployment: Introduction of “test sheets”
– Introduction of common software practices:

● Change-lists on update (internal) + code diff
● Proper ticketing (trac, redmine, paper...)

● Specification changes
● File formats: a little too conservative

 P. Montens – EFL Brussels Jan. 2016

// How it evolved 6 : critical problems, experience gains

● Brain split
– Network is partitioned, cluster members start their own life,

consistency problem
– Too few cluster members (at least 3, keep it uneven, quorum)

● Asymmetrical development teams
– Internal web services, vendor-locked software stacks and the

joy of SOAP RPC-through-HTTP

● Backups, or lack thereof
– Mnesia makes it very easy
– Erlang also (ets to file, …)
– Need platform independent backups

 P. Montens – EFL Brussels Jan. 2016

// How it evolved 7 : “simple” internal web-service work-
flow

Benefits of Erlang/OTP

 P. Montens – EFL Brussels Jan. 2016

// Benefits of using Erlang/OTP - 1

● Access layer
– Easy data validation

– Granular access rights

– Synchronous & Asynchronous tasks

● OTP : “simple” & stable
– Event handlers : gen_event, easily attach new handlers on

event streams

– simple_one_for_one : easy query handling parallelization

– Supervision tree : can't crash, if done well

● Language
– Atoms, pattern matching: great for refactoring

 P. Montens – EFL Brussels Jan. 2016

// Benefits of using Erlang/OTP - 2

● Language (continued)
– Data structures (proplists, records, dicts, maps, gb_trees, binaries, …)

– Type and function specification

– Single variable assignments and simple in-and-out functions help build
stable code, even in bad days (// TDD)

● Remote console : helps in developing, debugging,
maintenance, support, ...

● Data storage : mnesia, ets, dets and storing native Erlang terms
● Integration with other languages

– .Net, Prolog, Php, Python, Js

● Platform tools : eunit, dialyser, code coverage, vimerl, …

 P. Montens – EFL Brussels Jan. 2016

// Benefits of using Erlang/OTP - 3

● Quasi-DSL
– Only needs some parse transforms with yecc or a simple

lexer/tokenizer

– Great for code re-use

– Add or enhance functionality quickly and error free

– Separates task definition & execution

– Tasks can be dynamically altered or generated

● Code hot swapping. NOT !
– Didn't use it yet, though I should

● Full recompilations take time
● Larger Mnesia DB's take time to load and sync

Example break

Streaming compressed file archive

(while still archiving/compressing)

In hindsight...

 P. Montens – EFL Brussels Jan. 2016

// In hindsight...

● Mnesia may or may not be the DB you're looking for
– Great for intermediate/hot storage buffer, very fast reads, great for web application,

transient data

– Net-splits can occur, need tool for granular consistency check

● String handling, utf-8 support
– Much better since v.16 and 17
– Still no specific library : making your own tools promotes understanding of Unicode multi-

byte encoding (which is good, and easy with Erlang's binary pattern matching)

● For long & serious projects, mitigate code rot risks: use 3rd party tools you
know will still be maintained in 5 to 10 years

● Take time to set up the right environment for fast & easy iterative and
incremental development (didn't do that, still no hot code swapping after 7
years)

● More open-minded look on interface, up-loadable file-types (hard problem)
● Prolog is stabe, but not very scalable

How it fitted for the gov't

 P. Montens – EFL Brussels Jan. 2016

How it fitted for the gov't

● It's open source : no charges, no vendor lock-in
● Powerful language even for small, 1-person teams
● Has been envisioned as a tool for things that (must)

work, for achieving goals, for projects that must
ship : adapts to new requirements, scales, provides
useful libraries when needed (hmac, crypto, …),
vibrant community, rich history

● Stable, reliable, refactorable, scalable
● OTP shines in server applications (which is

basically everywhere these days)

After-word

 P. Montens – EFL Brussels Jan. 2016

// After-word 1

● The Erlang triad:
– Programming Erlang – Joe Armstrong

– Learn You Some Erlang for Great Good – Fred Hébert
– Erlang and OTP In Action – M.Logan, E.Merritt, R.Carlsson

● Check the tools :
– Rebar (deployment, releases, packaging, building, …)
– Cowboy (modern & very fast http server)
– Erlang.mk (Erlang build tool, dependencies,...)

● Start with a small project, take the time do to it well
(OTP)

 P. Montens – EFL Brussels Jan. 2016

// After-word 2: some books

That's all Folks !

Erlang/OTP In the wild: a governmental web application

Pieterjan Montens @ Erlang Factory Lite Brussels 2016

http://pieterjan.montens.net

pieterjan@montens.net

https://github.com/RvS-CdE

https://github.com/PieterjanMontens

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39

