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// Introduction

● A little about myself
● What the application is and what it does

● How it started
● How it evolved
● What the benefits of using Erlang/OTP were
● In hindsight…

● Conclusion

And a demo somewhere in between
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// Intro : A little about me

● Pieterjan Montens
– born in Bruges, grew up in the East Cantons, lives in 

Liège, works in Brussels

● Jurist & self-taught software & system « engineer »
● Merged interest for IT, pleasure of building stuff 

and the desperate state of justice computerization
● Using Erlang/OTP since 2008, in Belgium & 

Switzerland
● Works at the Council of State in Brussels, 

occasional freelancer/consultant
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// Intro : the application
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// Intro : What the application is & does

● e-proceedings platform, where lawyers and the court 
exchange documents electronically

● Sends e-mails, notifies urgent procedures via sms, has 
plenty of services, multiple browser/platform support, 
no java, prolog, eID authentication and signatures, ...

● May seem easy, and everyone thought it would be, 
but …

● Erlang delivered, and then some
● Achievement : application concepts transcribed in a 

Royal Decree
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// Intro : What the application is & does : Royal Decree

http://www.etaamb.be/fr/2014000018
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// Intro : What the application is & does : the « but »

But…
● Complex access hierarchy and logic : some can see and/or sign, others can't or only partially, 

not always at the same time, not always for the same reasons, « your mileage may vary »
● Judiciary logic (it's logic except when it's not)
● E-mail notifications, SMS notification
● Specific business intelligence, jurisprudential procedure knowledge in the minds of experts 

who spend their lives honing and complexifying it
● Your users are 90 % lawyers, 10 % common people, with little or no IT background
● Electronic signatures are mandatory (and rightfully so)
● 24/7 operation
● Private data, strictly confidential information (enterprise IP, protected personal data, ...)
● Multiple interfaces, interfacings
● GUI's: at least 2
● Credibility of the institution is at stake
● Reality check : You do Q&A, support, maintenance & future develoments



  

How it started
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// How it started 1 : the context

● State of justice computerization
– Millions lost in failed attempts (phoenix)

– Cut and paste : paper & scissors

– Lost in time

– Just yesterday, in 2016, ...

● Initial requirement : something simple to exchange 
files. In a secure way, for jurists.

● Developer gets “irrationally adventurous*” : uses 
Erlang/OTP

* He wasn't, though many benefits occured after the fact
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// How it started 2 : hard

● Why Erlang ? (The good choice) 
– Step up from Php : less scripting, more programming
– Joe Armstrong's book: mind bender.

● Joe's anagram example

– Erlang language expressiveness

● Why an Erlang web framework ? (The not so good 
choice)
– Still good : Fast prototyping (3 months)
– Bad : Limiting, working around it rather than with it
– Hand-holding : you don't need/want to know OTP !
– Erlang is not a templating language



  

> Code Interlude <

Programming Erlang, by Joe Armstrong

perms([]) -> [[]];

perms(L)  -> 

[[H|T] || H <- L, T <- perms(L--[H])].

1> lib_misc:perms("123").

["123","132","213","231","312","321"]

2> lib_misc:perms("cats").

["cats", "cast", "ctas", "ctsa", "csat", "csta", "acts", 
"acst","atcs", "atsc", "asct", "astc", "tcas", "tcsa", "tacs", 
"tasc","tsca", "tsac", "scat", "scta", "sact", "satc", "stca", 
"stac"]
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// How it started 3 : how it looked
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// How it started 4 : early benefits

Early benefits : 
● Refactoring is fun (pattern matching & atoms)
● Update application code & mnesia data 

structures without losing data, from day 1
● Migration to separate OTP applications, 

mochiweb server, true parallelism
● Organic evolution to quasi-DSL, improved code 

re-use, simplification
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// How it started 5 : refactoring web interface calls

● Central column: web 
API

● On the left: old, 
monolithic server 
application calls

● On the right: rpc casts, 
synchronous and 
asynchronous calls and 
yields to a dynamic 
simple_one_for_one 
OTP gen_server 
instance



  

How it evolved



 P. Montens – EFL Brussels Jan. 2016

// How it evolved 1 : the birth of a platform

● The application isn't just a server. It's a platform. 
A domain specific database.

● Multiple services : REST (HATEOAS) API, 
sockets, e-mails, sms, dropbox-like client, …

● Two layers (independent OTP applications), 
distributed application core

● Web clients, simple & efficient : HTML, JS, PHP, 
CSS
– Functional Js is fun : promises, web workers, web 

sockets, ... 



  

Demo break
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// How it evolved 2 : screen map
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// How it evolved 3 : where it is now

● 5 years in development, 2 years in service
● Continuous development

– Short iterations, fast reaction time, scrum-style
– eunit
– Gui's take a long time to make

● Interest in many forms, from many actors
● Electronic signature support with eID in Firefox, Chrome, Safari, 

Edge
– in-house C# IE plug-in, Firefox crypto.signtext mess (pkcs#7)
– Estonian eID software team does a great job
– First open-source project of the CoS: xmldsig_js (XML-DSig)

● Stability : first year, no downtime. .
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// How it evolved 4 : what will/could come now

● Better document generation
● Cloud-like services
● Integration with 3rd parties
● GUI improvements 
● Improved

cluster
operation
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// How it evolved 5 : common problems & cause

● User error
– Software must mitigate risks and consequences 

(checks, rollbacks)

● Developer error
– Deployment: Introduction of “test sheets”
– Introduction of common software practices:

● Change-lists on update (internal) + code diff
● Proper ticketing (trac, redmine, paper...)

● Specification changes
● File formats: a little too conservative 
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// How it evolved 6 : critical problems, experience gains

● Brain split
– Network is partitioned, cluster members start their own life, 

consistency problem
– Too few cluster members (at least 3, keep it uneven, quorum)

● Asymmetrical development teams
– Internal web services, vendor-locked software stacks and the 

joy of SOAP RPC-through-HTTP

● Backups, or lack thereof
– Mnesia makes it very easy
– Erlang also (ets to file, …)
– Need platform independent backups
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// How it evolved 7 : “simple” internal web-service work-
flow



  

Benefits of Erlang/OTP
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// Benefits of using Erlang/OTP - 1 

● Access layer
– Easy data validation

– Granular access rights

– Synchronous & Asynchronous tasks

● OTP : “simple” & stable
– Event handlers : gen_event, easily attach new handlers on 

event streams

– simple_one_for_one : easy query handling parallelization

– Supervision tree : can't crash, if done well 

● Language
– Atoms, pattern matching: great for refactoring
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// Benefits of using Erlang/OTP - 2 

● Language (continued)
– Data structures (proplists, records, dicts, maps, gb_trees, binaries, …)

– Type and function specification

– Single variable assignments and simple in-and-out functions help build 
stable code, even in bad days (// TDD)

● Remote console : helps in developing, debugging, 
maintenance, support, ...

● Data storage : mnesia, ets, dets and storing native Erlang terms
● Integration with other languages

– .Net, Prolog, Php, Python, Js

● Platform tools : eunit, dialyser, code coverage, vimerl, …
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// Benefits of using Erlang/OTP - 3 

● Quasi-DSL
– Only needs some parse transforms with yecc or a simple 

lexer/tokenizer

– Great for code re-use

– Add or enhance functionality quickly and error free

– Separates task definition & execution

– Tasks can be dynamically altered or generated

● Code hot swapping. NOT !
– Didn't use it yet, though I should

● Full recompilations take time
● Larger Mnesia DB's take time to load and sync



  

Example break

Streaming compressed file archive 

(while still archiving/compressing)



  

In hindsight...
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// In hindsight...

● Mnesia may or may not be the DB you're looking for
– Great for intermediate/hot storage buffer, very fast reads, great for web application, 

transient data

– Net-splits can occur, need tool for granular consistency check

● String handling, utf-8 support
– Much better since v.16 and 17
– Still no specific library : making your own tools promotes understanding of Unicode multi-

byte encoding (which is good, and easy with Erlang's binary pattern matching)

● For long & serious projects, mitigate code rot risks: use 3rd party tools you 
know will still be maintained in 5 to 10 years

● Take time to set up the right environment for fast & easy iterative and 
incremental development (didn't do that, still no hot code swapping after 7 
years)

● More open-minded look on interface, up-loadable file-types (hard problem)
● Prolog is stabe, but not very scalable





  

How it fitted for the gov't



 P. Montens – EFL Brussels Jan. 2016

How it fitted for the gov't

● It's open source : no charges, no vendor lock-in
● Powerful language even for small, 1-person teams
● Has been envisioned as a tool for things that (must) 

work, for achieving goals, for projects that must 
ship : adapts to new requirements, scales, provides 
useful libraries when needed (hmac, crypto, … ), 
vibrant community, rich history

● Stable, reliable, refactorable, scalable
● OTP shines in server applications (which is 

basically everywhere these days)



  

After-word
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// After-word 1

● The Erlang triad:
– Programming Erlang – Joe Armstrong

– Learn You Some Erlang for Great Good – Fred Hébert
– Erlang and OTP In Action – M.Logan, E.Merritt, R.Carlsson

● Check the tools : 
– Rebar (deployment, releases, packaging, building, …)
– Cowboy (modern & very fast http server)
– Erlang.mk (Erlang build tool, dependencies,...) 

● Start with a small project, take the time do to it well 
(OTP)
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// After-word 2: some books



  

That's all Folks !

Erlang/OTP In the wild: a governmental web application

Pieterjan Montens @ Erlang Factory Lite Brussels 2016

http://pieterjan.montens.net  

pieterjan@montens.net 

https://github.com/RvS-CdE 

https://github.com/PieterjanMontens
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