Design by Contract in

Elixir

“Let it crash” meets “it shouldn’t crash”

Elba Sanchez
Marquez
ride.com

@elbasanchezm

Guillermo

Iguaran Suarez
ride.com

@guilleiguaran

———

http://ride.com
http://ride.com

CLICK SOME
NOW BUTTONS AND
WHAT SEE WHAT

IN MY DEFENSE,
THAT HARDLY

DOI HAPPENS. YOU EVER HAPPENS.

DO? CAN'T HURT
ANYTHING.

s

“f-"’

Dilbert.com DilbertCartoonist@gmail.com

101509 ©2009Scott Adams, Inc./Dist. by UFS, Inc.

Did you know?

There are really expensive software errors

NASA’s Mars Climate Orbiter

non-Sl| Wﬂts

Did you know?

There are really expensive software errors

Heathrow Terminal 5 Opening

Did you know?

There are really expensive software errors

NOT SURE IF INEED A HYPHEN

The Mariner 1 Spacecraft

. ————— e— e ————

Did you know?

There are really expensive software errors

The Morris Internet Worm source code

This disk contains the complete source code of the Morris Internet
worm program. This tiny, 99-line program brought large pleces
of the Internet to a standstill on November 2™, 1988,

The worm was the first of many intrusive programs that use the
internet to spread.

ioiie Computer
orio:

10: Jo History
-To ' Museum

The Morris worm

Did you know?

There are really expensive software errors

L el [y

 i®

Ariane 5 flight
501

Its fastest engines exploited a
bug that was not found In
previous models

e — e ———

What happened?

the software had tried to cram a 64-bit number
into a 16-bit space

e e e e — e e

ception Handler

AppCrash.exe has stopped working

A problem caused the program to stop working correctly.
Windows will close the program and notify you if a solution is
available.

Close program

i —

They couldn’t

Blame management

Blame the language

i —

They couldn’t

Blame implementation

They blamed

the reuse
specification

Ias

b

=
s
=
25
(g’
=
I
v
2
—

horizontal b

e — i —— e e e e e

Back to design by contract...

A little bit of theory

History

Design by contract has its roots in work on
formal verification, formal specification and
Hoare logic.

History

Hoare described the use of representation
invariants and abstract functions to prove
correctness of abstract data types

Basics of Hoare logic

Hoare Logic is at the core of the deductive approach of
the DbC.

1P} C 4Qk%

Formal reasoning about program correctness using pre and postconditions

Basics of hoare logic

® Provides axioms and inference rules

|

® There are rules for concurrency, procedures, jumps, and
pointers.

DbC vs. Testing

Design by contract (DbC) Unit tests

e Software correctness e Used to verify that the
methodology software works

_ correctly
Programmatically asserts

the change in state e Hard to detect all
caused by a piece of a possible edge cases
program during development.

What is Design by Contract?

Obligations Rights

Buy Airline ticket, (] Each party benefits and accepts

bring accepted Reach obligations

Passenger | baggage and be at L
airport 2 hours destination (1 One party’s benefits are the

before other party’s obligation

No need to carry
passenger who [SERIEENCHAGELELRUE Y

is late, or has parties understand what would
unacceptable be guaranteed without saying
baggage, or how.
hasn’t paid
ticket

Bring passenger to

Airline destination

Structure of a

Contract

—— e ———

PRECONDITION

Requires clause

—— e ——— e —

Structure of a contract

POSTCONDITION

Ensures Clause

— e —— e ———e

Structure of a contract

IFF PRECONDITION TRUE

el

—> POSTCONDITION TRUE

—— e ——

Structure of a contract

IFF PRECONDITION

put (x: ELEMENT; key: STRING) is
-- Insert x so that it will be retrievable through key.
require
count <= capacity
not key.empty
do
... Some insertion algorithm ...
ensure
has (x)

item (key) =

count = old count + 1

hitps://www.eiffel.com/values/design-by-contract/introduction/

https://www.eiffel.com/values/design-by-contract/introduction/

put (x: ELEMENT; key: STRING) is
-- Insert x so that it will be retrievable through key.
require

count <= capacity

not key.empty
do

... Some insertion algorithm ...
ensure

has (x)

item (key) =

count = old count + 1

hitps://www.eiffel.com/values/design-by-contract/introduction/

https://www.eiffel.com/values/design-by-contract/introduction/

put (x: ELEMENT; key: STRING) is
-- Insert x so that it will be retrievable through key.

require

count <= capacity

not key.empty
do

... Some insertion algorithm ...
ensure

has (x)

item (key) =

count = old count + 1

https://www.eiffel.com/values/design-by-contract/introduction/

https://www.eiffel.com/values/design-by-contract/introduction/

put (x: ELEMENT; key: STRING) is
-- Insert x so that it will be retrievable through key.
require
count <= capacity
not key.empty
do

... Some insertion algorithm ...

ensure
has (x)
item (key) =
count = old count + 1

https://www.eiffel.com/values/design-by-contract/introduction/

https://www.eiffel.com/values/design-by-contract/introduction/

in Ariane’s case

convert (horizontal bias:
i DOUBLE) : INTEGER 1is
Where the precondition require

(require...) states forizontal-bias
clearly and precisely do
what the input must
satisfy to be acceptable.

ensure

end

Eiffel Version

“When quality is pursued,

productivity follows.”

| L

Reliability

Ll

|
[Correctness

i

.
.
.
.
.
L3
.
.
.
.
.
.
.t

-
£
L2
L2
Y\

[Robustness

i
i

Advantages

e Assertions (preconditions and postconditions in particular) can

be automatically turned on during testing.

Advantages

® Assertions can remain turned on during execution, triggering an

exception if violated.

Advantages

e Assertions are a prime component of the software and its

automatically produced documentation.

QU

There are several implementations of DbC libraries for some languages

—— — e — e —

Metaprogramming In Elixir

r@@mm
WIAMIMers

M%tl%ggogramming

Write Less Code,
Get More Done
(and Have Fun!)

Macros

Book by Chris McCord - 0'Reilly

;

W
2
\

Edited by Jacquelyn (‘ﬂruh__‘__e."

Chris McCord
fauthor of the Phoendx framework)

R o

— e ——

Macros Rules

Rule #1

Don’t write Macros

=

-
..
L 4 g

You do not talk about fight club

Macros Rules

Rule #2

Use Macros gratuitously

Macros

® A macro is code that writes code

| o Many constructs in Elixir are macros (def, If, unless,
+ defmodule)

® Elixir code runs at compile time and can be used to manipulate
language AST.

Abstract Syntax Tree

{atom | tuple, list, list | atom}

~— i E——

Quote Macro

1ex> quote do: sum(l, 2, 3)

t:sum, [, [1, 2, 31}

~— i E——

Quote Macro

1ex> quote do: sum(l, 2, 3)

t:sum, [, [1, 2, 31}

~— i E——

Quote Macro

1ex> quote do: sum(l, 2, 3)

t:sum, [, [1, 2, 31}

~— i E——

Quote Macro

1ex> quote do: sum(l, 2, 3)

t:sum, [, [1, 2, 31}

1ex> number = 13

1ex> Macro.to_string(quote do: 11 + unquote(number))
"11 + 13"

Back to DbC

e We used Elixir macros to extend the language adding support for
basic DbC constructs.

|

+ e We tagged existing functions with “requires” and “ensures” tags.

e Macros manipulate function body to insert precondition and
postconditions inside of functions.

What we had to do

defmodule Math do
use Contracts

requires num >= 0
ensures result >= 0 && :math.pow(result, 2) <= num && :math.pow(result + 1, 2) >= num
def sqrt(num) do
result = :math.sqrt(num)
end
end

defmodule ContractsTest do
use ExUnit.Case

defmodule Tank do

defstruct level: @, max_level: 10, in_valve: :closed, out_valve: :closed

use Contracts

Precondition

requires not full?(tank) && tank.in_valve == :open && tank.out_valve == :closed

ensures full?(result) && result.in_valve == :closed && result.out_valve == :closed

def fill(tank) do
%$Tank{tank | level: 10, in_valve: :closed}

end

requires not full?(tank) && tank.in_valve == :open && tank.out_valve == :closed
== :closed

def fill(tank) do
%$Tank{tank | level: 10, in_valve: :closed}
end

test "fill/1 fills the tank with water" do
tank = %$Tank{level: 10}
tank = Tank.fill(tank)

assert Tank.full?(tank)
end

Precondition

requires tank.in_valve == :closed && tank.out_valve == :open
== :closed && result.out_valve == :closed

ensures empty?(result) && result.in_valve ==

def empty(tank) do
%Tank{tank | level: 1, out_valve: :closed}

end

Postcondition

requires tank.in_valve == :closed && tank.out_valve == :open
ensures empty?(result) && result.in_valve == :closed && result.out_valve ==
def empty(tank) do
%$Tank{tank | level: 1, out_valve: :closed}
end

requires tank.in_valve == :closed && tank.out_valve == :open

ensures empty?(result) && result.in_valve == :closed && result.out_valve == :closed
def empty(tank) do

test "empty/1l empties the tank" do
tank = %Tank{level: 10, out_valve: :open}
tank = Tank. empty(tank)

assert Tank.empty?(tank)
end

Github: epsanchezma

elixir-contracts

https://go0o0.gl/519GiU

https://goo.gl/5f9GiU

FURTHER WORK

Generate test-cases from Gontracts

Add configuration options to turn-on/off contracts in
development and production

Generate automated documentation from contracts

Generate QuickCheck tests

To conclude

Design by contract does not replace regular testing
strategies

Contracts add an extra grade of reliability

It’s not a silver hullet

References

Ariane’s case: http://se.inf.ethz.ch/~meyer/publications/computer/
ariane.pdf

DbC History: http://c2.com/cgi/wiki?DesignByContract

Hoare Logic: https://www.cs.cmu.edu/~aldrich/courses/654-sp07/
slides/7-hoare.pdf

DbC: http://ansymore.uantwerpen.be/system/files/uploads/courses/
SE3BAC/06DesignContract.pdf, http://web.cse.ohio-state.edu/
software/2221/web-sw1/extras/slides/09.Design-by-Contract.pdf

Examples: https://www.eiffel.com/

http://se.inf.ethz.ch/~meyer/publications/computer/ariane.pdf
http://c2.com/cgi/wiki?DesignByContract
https://www.cs.cmu.edu/~aldrich/courses/654-sp07/slides/7-hoare.pdf
http://ansymore.uantwerpen.be/system/files/uploads/courses/SE3BAC/06DesignContract.pdf
http://web.cse.ohio-state.edu/software/2221/web-sw1/extras/slides/09.Design-by-Contract.pdf
https://www.eiffel.com/

