
Point Of No Local Return:
The Continuing Story Of Erlang

Type Systems

Zeeshan Lakhani
Papers We Love, Basho Technologies

@zeeshanlakhani

I don’t know nothin

• Konstantinos Sagonas

I don’t know nothin

• Konstantinos Sagonas
• John Hughes

I don’t know nothin

• Konstantinos Sagonas
• John Hughes
• Joe Armstrong

I don’t know nothin

• Konstantinos Sagonas
• John Hughes
• Joe Armstrong
• Tobias Lindahl

I don’t know nothin

• Konstantinos Sagonas
• John Hughes
• Joe Armstrong
• Tobias Lindahl
• Maria Christakis

I don’t know nothin

• Konstantinos Sagonas
• John Hughes
• Joe Armstrong
• Tobias Lindahl
• Maria Christakis
• Joe Devivo

I don’t know nothin

• Konstantinos Sagonas
• John Hughes
• Joe Armstrong
• Tobias Lindahl
• Maria Christakis
• Joe Devivo
• more…

I don’t know nothin

Don't surround yourself with yourself,
Move on back two squares,
Send an Instant Karma to me,
Initial it with loving care
Don't surround
Yourself.
'Cause it's time, it's time in time with your time and
its news is captured
For the queen to use.

datatype suit = Clubs | Diamonds | Hearts | Spades
datatype rank = Jack | Queen | King | Ace | Num of int
type card = suit * rank

fun card_color card =
 case card of
 (Clubs, _) => Black
 | (Spades, _) => Black
 | (Diamonds, _) => Red
 | (Hearts, _) => Red

Static Strong Type System - SML

> 6 + "1".
** exception error: an error occurred when
evaluating an arithmetic expression
 in operator +/2
 called as 6 + "1"

Dynamic Strong Typing[30]

“Dynamic typing is but a special case of static typing, one
that limits, rather than liberates, one that shuts down
opportunities, rather than opening up new vistas. Need I
say it?”[24]
 — Bob Harper

“All is fair in love and war, even trying to add a
static type system in a dynamically typed
programming language”[23]

 — Lindahl and Sagonas

“Siek and Taha [2006] coined the term gradual
typing to describe a theory for integrating static
and dynamic typing within a single language that 1)
puts the programmer in control of which
regions of code are statically or dynamically typed
and 2) enables the gradual evolution of code
between the two typing disciplines.”[29]
 — Siek, et al.

Gradual Typing

(struct pt ([x : Real] [y : Real]))

(: distance (-> pt pt Real))

(define (distance p1 p2)
 (sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
 (sqr (- (pt-y p2) (pt-y p1))))))

(struct pt ([x : Real] [y : Real]))

(: distance (-> pt pt Real))

(distance "foo" 4)

stdin::189: Type Checker: type mismatch
 expected: pt
 given: String
 in: "foo"
 context...:
 f269
 /Applications/Racket/share/pkgs/typed-racket-lib/typed-racket/
typecheck/tc-app/tc-app-main.rkt:91:12: for-loop
 parse-loop559
 /Applications/Racket/share/pkgs/typed-racket-lib/typed-racket/
typecheck/tc-app/tc-app-main.rkt:68:0: tc/app-regular
 /Applications/Racket/share/pkgs/typed-racket-lib/typed-racket/
typecheck/tc-expr-unit.rkt:287:0: tc-expr
 /Applications/Racket/share/pkgs/typed-racket-lib/typed-racket/
typecheck/tc-toplevel.rkt:560:0: tc-toplevel-form
 temp19
 /Applications/Racket/collects/racket/private/misc.rkt:87:7

I: A Subset of the Past

• e : τ
• e is well-typed, meaning that its

components fit together properly according
to the rules (e.g., operators are applied to
the right kinds of arguments), and

• τ : when e is evaluated, and its evaluation
terminates, it produces a value described
by τ.

Soft Typing
- Type inference applied to dynamically typed

languages

- Foundational Works: Cartwright and Fagan’s
Soft Typing[31] & Aiken and Wimmers’s Type
Inclusion on Constraints and Type Inference[2]

- top type can be used in the absence of meaningful
ordinary types;

Principal Types
- Finding a way to represent all all possible typings

for a term

- Foundational Work: Jim’s What are principal
typings and what are they good for?[3]

- Not only a principal type but also the associated
environment

- type signature only holds if the arguments in an
application are subtypes of the arguments in the
signature.

First Runs

First Runs cont.
- 1996 Soft-Type system prototype by Lindgren

- Data Type (Collection) representing a mapping from
variables to types, defined by Meet (GLB - combing
variables in diff. expressions) and Join operations (LUB -
for when inferring types with sub-clauses, like case)

- Constraint solver (Illyria) could not represent types
dealing with individual atoms. Had issues simplifying non-
canonical representations:

- 1998 - Armstrong/Arts - declaration files generate html
pages… the specification web

The Marlow / Wadler Joint

- Wadler had a 1-year sabbatical and was going to write a
type system for Erlang[11]

- Based on Aiken/Wimmers Type Inclusion Constraints and
Type Inference

- support of recursive types and disjoint unions

- Had type annotation system akin to Dialyzer/Typer specs

- Disappointing results: Lack of process types/inter-process
checks; worked only on a subset of Erlang[11]

subtyping: try to solve sets of constraints
of the form α ⊆ β[10]

unification (Hindley-Milner): solve
constraints of the form α = β[10]

 Object
 / \
 String Other
 \ /
 (null)

Unification is literally the process of looking at each of
the constraints and trying to find a single type which
satisfies them all[22]

To unify two type expressions is to find substitutions
for all type variables that make the expressions
identical

Wright/Cartwright modified Hindley-Milner typing to
accommodate union types and subtyping when
creating a soft typing system in Scheme[6]

and(true, true) -> true;
and(false, _) -> false;
and(_, false) -> false.

Success?

and(true, true) -> true;
and(false, X) -> false;
and(X, false) -> false.

and(any(), false) -> true + false.

and(X,Y) ->
 let Z = (case Y of false -> false end) in
 case X of
 true ->
 case Y of
 true -> true;
 X -> Z
 end;
 false -> false;
 X -> Z
 end.

-spec and(_,_) -> boolean().

Another Soft Typing System
- Uses dataflow analysis to compute for each variable and subexpression in

the program, an approximation of the set of possible values.

- Generates type expressions and Matches terms against expressions

- Call(f, l, c)= c’ to allow for typed polymorphism

- Abstract, Public, Unsafe Types (mbox -> mailbox receives)

- “It turns out that specifying the interaction of an Erlang process is
rather difficult”

- Similar specification language, based on Marlow/Wadler’s paper,
separates out spec files from .erl files

- Tons of Noise (must annotate at all interface points)

how do we ensure that the receive
expressions in a process body expect
messages of the correct type?

Γ ⊢ e : τ receiving µ

makeref and guaranteeing that replies
are sent to the correct process.

II: The Tao of Now

- Sound for defect detection

- Never generate FALSE ALARMS (POSITIVES)

- Adapt to Erlang Code Style

- Icode bytecode translation (represented as a CFG)

- Local analysis via PLT (Persistent Lookup Table) for intra-
module/cross-module mappings

- disjoint union of prime types

Hello Dialyzer

“laissez-faire style of programming”[9]

 —Konstantinos Sagonas

disjoint unions: T1+T2 is a “union” of T1 and T2 in the
sense that its elements include all the elements of T1 and T2[25]

• A type is the greatest lower bound of its subtype constraints. To
solve a disjunction, all its parts are solved and then the solution
is the least upper bound (sup or supremum) of the solutions to
each disjunctive part.[27]

• (τx ⊆ 42 ∧ τout ⊆ ’true’) ∨ (τout ⊆ ’false’)

• τout ⊆ sup(’true’, ’false’) = bool()
 τx ⊆ sup(42, any()) = any()

%% File: "./and_y.erl"
%% -------------------
-spec andy(_,_) -> boolean().
-spec module_info() -> any().
-spec module_info(_) -> any().

%% File: "./foo.erl"
%% -----------------
-spec length_2([any()]) -> non_neg_integer().
-spec length_3([any()],non_neg_integer()) -> non_neg_integer().
-spec soup(1..10,[atom()]) -> [atom() | integer()].
-spec dejour(_) -> none().
-spec inc(X) -> X when is_subtype(X,number()).
-spec module_info() -> any().
-spec module_info(_) -> any().

%% File: "./hello.erl"
%% -------------------
-spec hello_world() -> 'hello'.
-spec world(pid()) -> 'hi'.
-spec module_info() -> any().
-spec module_info(_) -> any().

- Typer Inference is Compositional

- Find most general success typings under constraints

- Never rejects programs accepted by BEAM

- Uses forward data-flow analysis to apply a more refined type, using
knowledge of call sites

-module(m1). -export([main/1]).
main(N) when is integer(N) -> tag(N+42).
tag(N) -> {’tag’, N}.

-module(m2). -export([main/1]).
main(N) when is integer(N) -> {tag(N+42), fun tag/1}.
tag(N) -> {’tag’, N}.

- Use bottom type (none(), but really no_return()) if conjunction is
unsatisfiable (no solution)

%% (list(), any())→any()
length 3([], N) -> N;
length 3([|T], N) ->
 length 3(T, N+1).

'length_2'/1 =
 %% Line 27
 fun (_cor0) ->
 apply 'length_3'/2
 (_cor0, 0)
'length_3'/2 =
 %% Line 29
 fun (_cor1,_cor0) ->
 case <_cor1,_cor0> of
 <[],N> when 'true' ->
 N
 %% Line 30
 <[_cor5|T],N> when 'true' ->
 let <_cor2> =
 call 'erlang':'+'
 (N, 1)
 in apply 'length_3'/2
 (T, _cor2)
 (<_cor4,_cor3> when 'true' ->
 (primop 'match_fail'
 ({'function_clause',_cor4,_cor3})
 -| [{'function_name',{'length_3',2}}])
 -| ['compiler_generated'])
 end

Core Erlang

Core Erlang (IR)

“We are instead interested in capturing the biggest set of terms for
which we can be sure that type clashes will definitely occur. Instead
of keeping track of this set, we will design an algorithm that infers
its complement, a function’s success typing. A success typing is a
type signature that over-approximates the set of types for
which the function can evaluate to a value.”

 — Lindahl and Sagonas

“The basic idea is to iteratively solve all constraints
in a conjunction until either a fixpoint is reached
or the algorithm counters some type clash and fails
by assigning the type none() to a type expression.

 — Lindahl and Sagonas

- Union Limit + Depth-k abstraction for termination

- Infers success typings for the functions by analyzing its nodes
(strongly connected components of the function call graph in a
bottom-up fashion)

- Not using conditional or intersection types… so

%% (integer() ∪ list())→integer() ∪ atom()
foo(X) when is integer(X) -> X + 1.
foo(X) -> list to atom(X).

looks like

∀α.(α)→(integer()?(α ∩ integer()))
 ∪ (atom()?(α ∩ list()))
 where {α ⊆ integer() ∪ list()}

%% is_subtype(X, atom) =:= X :: atom()
-spec inc(X) -> X when is_subtype(X, atom()).
inc(X) when is_integer(X) -> X + 1;
inc(X) when is_float(X) -> X + 1.0.

typer: Error in contract of function foo:inc/1
 The contract is: (X) -> X when is_subtype(X,atom())
 but the inferred signature is: (number()) -> number()

- Contracts allow for more refined analysis/success types

- Function types and polymorphic contracts
-spec(all/2 :: (((T) -> bool(), [T]) -> bool())).
 or

-spec id(X) -> X when X :: tuple().

- Support for contract overloading

-spec(inc/1 :: ((integer()) -> integer());
 ((float()) -> float())).
inc(X) when is integer(X) -> X + 1;
inc(X) when is float(X) -> X + 1.0.

- Testing real projects and exposing type information

- Add explicit type guards in key places in the code.

- Add type declarations and contracts

as Assistants[21]Compilers

as Assistants[21]
Type
Systems

main(X) ->
 case X of
 2 ->
 case X of
 1 -> a;
 2 -> b;
 Y -> Y
 end
end.

> dialyzer --slice
ex3.erl ex3.erl:9: The pattern 1 can never match the type 2
discrepancy sources:
ex3.erl:6 case X of <= Expressions: X
ex3.erl:7 2 -> <= Expressions: 2
ex3.erl:8 case X of <= Expressions: X
ex3.erl:9 1 -> a; <= Expressions: 1

ex3.erl:11: The variable Y can never match since previous clauses
completely covered the type 2 discrepancy sources:
ex3.erl:6 case X of <= Expressions: X
ex3.erl:7 2 -> <= Expressions: 2
ex3.erl:8 case X of <= Expressions: X
ex3.erl:10 2 -> b; <= Expressions: 2
ex3.erl:11 Y -> Y <= Expressions: Y

Explaining Success

In computer programming, program slicing is the
computation of the set of programs statements, the
program slice, that may affect the values at some point
of interest, referred to as a slicing criterion. Program
slicing can be used in debugging to locate source of
errors more easily[].

- Misuse of concurrency primitives can lead to defects around RN, RW,
RU, SR.

• RN: Receive with no messages

• RW: Receive of the wrong kind

• RU: Receive with unnecessary patterns (receive w/

never match clauses)

• SR: Send nowhere received

- Collects pairs of program points possibly involved in a race condition,
inspecting every possible execution path, traveling the CFG w/ a
depth-first search

- Sharing/alias component to determine if pid refers to the correct
process in CFG traversal

- Special care filtering out false alarms

-Wrace_conditions***

-export([start/0]).

start() ->
 Pid = spawn(fun pong/0),
 ping(Pid).

ping(Pid) ->
 Pid ! {self(), ping},
 receive pong -> pang end. %% incorrect false alarm init

pong() ->
 receive {Pid, ping} ->
 Pid ! pong
 end.

<tag><c><![CDATA[-Wrace_conditions]]></c>***</tag>
<item>Include warnings for possible race conditions. Note that the
 analysis that finds data races performs intra-procedural data flow
 analysis and can sometimes explode in time. Enable it at your own risk.
</item>[28]

Erlang is not a strict side-effect-free functional
language but a concurrent language[11]

- Thinking about Concurrency

- QuickCheck/PULSE (random scheduling)

- Concuerror and Model Checking tools

III: Playing a Session or N

Session Types
- Session types were designed as a typing discipline

for process calculi based on the π-calculus

- Have been called protocols for many years in
network and other engineering disciplines which
need to treat such patterns.

- Linearity (related to linear logic) is important as
channels must not be duplicated, as the
duplication of channels will result in the loss of
safety guarantees (e.g. must be use exactly once)

Session Typing for a Featherweight Erlang[16]

- Ensure message correlation (correlation sets) using
unique references via make_ref().

- Operates only over a minimal fragment of Erlang

- Only supports binary sessions, not multiparty ones

Monitored Session Erlang[20]

- Erlang’s communication patterns are informally defined.
How can we apply program logic to guarantee
communication safety?

- in MSE, monitors are first class and monitor logic is
separated (separate processes) from application/node logic

- The semantics of monitored networks are rejection-based:
should a principal attempt to send a message which does
not match the specification, the message is not delivered

- Session fidelity proves that safety and transparency hold
under reduction.

module src.com.simonjf.ScribbleExamples.PingPong.PingPong;

global protocol PingPong(role A, role B) {
 rec loop {
 ping() from A to B;
 pong() from B to A;
 continue loop;
 }
}

Scribble

Scribble

module src.com.simonjf.ScribbleExamples.PingPong.PingPong_A;

local protocol PingPong at A(role A,role B) {
 rec loop {
 ping() to B;
 pong() from B;
 continue loop;
 }
}

Scribble

module src.com.simonjf.ScribbleExamples.PingPong.PingPong_B;

local protocol PingPong at B(role A,role B) {
 rec loop {
 ping() from A;
 pong() to A;
 continue loop;
 }
}

module src.com.simonjf.scribbletest.TwoBuyer;

type <erlang> "string" from "" as String;
type <erlang> "integer" from "" as Integer;

global protocol TwoBuyers(role A, role B, role S) {
 title(String) from A to S;
 quote(Integer) from S to A, B;
 // TODO: Loop recursion here
 share(Integer) from A to B;
 choice at B {
 accept(String) from B to A, S;
 date(String) from S to B;
 } or {
 retry() from B to A, S;
 // TODO Loop here
 } or {
 quit() from B to A, S;
 }
}

Scribble cont.

CFSMs

A conversation key is a 3-tuple (M,R,S), where M is the
process ID of the monitor, R is the name of the role that the
participant is playing in the session, and S is the process ID
of the conversation_instance process for the session.

Thinking Aloud

• what patterns do we see?

• contract/type checks/errors with
3rd-party libs/modules

• session types for epidemic broadcast
protocols and selective hearing[32]

[1] A. Aiken and B. Murphy, “Static type inference in a dynamically typed language,” Proc. 18th
ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang. - POPL ’91, pp. 279–290, 1991.
[2] A. Aiken and E. L. Wimmers, “Type inclusion constraints and type inference,” Proc. Conf.
Funct. …, pp. 31–41, 1993.
[3] Trevor Jim. 1996. What are principal typings and what are they good for?. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL
'96).
[4] A. Lindgren, “A prototype of a soft type system for erlang,” 1996.
[5] S. Marlow and P. Wadler, “A Practical Subtyping System for Erlang,” Int. Conf. Funct.
Program., 1997.
[6] A. K. Wright and R. Cartwright, “A practical soft type system for scheme,” ACM Trans.
Program. Lang. Syst., vol. 19, no. 1, pp. 87–152, 1997.
[7] S.-O. Nyström, “A soft-typing system for Erlang,” Proc. Erlang Work., pp. 56–71, 2003.
[8] J. Hughes, D. Sands, K. Ostrovsky, “Typing Erlang,” 2002.
[9] K. Sagonas, “Experience from developing the Dialyzer: A static analysis tool detecting defects
in Erlang applications,” … Eval. Softw. Defect Detect. Tools, pp. 1–5, 2005.
[10] T. Lindahl and K. Sagonas, “Practical type inference based on success typings,” Proc. 8th
ACM SIGPLAN Symp. Princ. Pract. Declar. Program. - PPDP ’06, p. 167, 2006.
[11] J. Armstrong, “A History of Erlang,” … Conf. Hist. …, 2007.
[12] M. Jimenez, T. Lindahl, and K. Sagonas, “A language for specifying type contracts in Erlang
and its interaction with success typings,” … SIGPLAN Work. ERLANG …, pp. 11–17, 2007.

[13] K. Sagonas and D. Luna, “Gradual typing of Erlang programs: A Wrangler experience,”
Proc. 7th ACM SIGPLAN Work. Erlang, pp. 73–82, 2008.
[14] M. Christakis and K. Sagonas, “Static Detection of Deadlocks in Erlang,” pp. 1–16, 2010.
[15] M. Christakis and K. Sagonas, “Detection of asynchronous message passing errors using
static analysis,” Proc. 13th Int. Conf. Pract. Asp. Declar. Lang., pp. 5–18, 2011.
[16] D. Mostrous and V. T. Vasconcelos, “Session typing for a featherweight Erlang,” Coord.
Model. Lang. 2011, pp. 95–109, 2011.
[17] K. Sagonas, J. Silva, and S. Tamarit, “Precise Explanation of Success Typing Errors,” Pepm,
pp. 33–42, 2013.
[18] M. Christakis, A. Gotovos, and K. Sagonas, “Systematic testing for detecting concurrency
errors in Erlang programs,” Proc. - IEEE 6th Int. Conf. Softw. Testing, Verif. Validation, ICST
2013, pp. 154–163, 2013.
[19] K. Honda, R. Hu, R. Neykova, T. Chen, P. Deniélou, and N. Yoshida, “Structuring
Communication with Session Types,” Concurr. Objects Beyond Pap. Dedic. to Akinori Yonezawa
Occas. His 65th Birthd., pp. 1–23, 2014.
[20] S. Fowler, “Monitoring Erlang / OTP Applications using Multiparty Session Types,” 2015.
[21] E. Czaplicki, “Compilers as Assistants”., http://elm-lang.org/blog/compilers-as-assistants”
[22] D. Spiewak, “What is Hindley-Milner? (and why is it cool?)”., http://www.codecommit.com/
blog/scala/what-is-hindley-milner-and-why-is-it-cool
[23] T. Lindahl and K. Sagonas, “TYPER: A Type Annotator of Erlang Code”
[24] B. Harper, “Dynamic Languages are Static Languages”., https://
existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages

http://elm-lang.org/blog/compilers-as-assistants
http://www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool
https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages

[25] B. Pierce, “Types and Programming Languages”
[26] Wikipedia, “Program Slicing”., https://en.wikipedia.org/wiki/Program_slicing
[27] T. Lindahl and K. Sagonas, “Detecting software defects in telecom applications through
lightweight static analysis: A war story,” Program. Lang. Syst. Proc., vol. 3302, pp. 91–106, 2004.
[28] https://github.com/erlang/otp/blob/maint/lib/dialyzer/doc/src/dialyzer.xml
[29] J. Siek, et al, “Refined Criteria for Gradual Typing”
[30] F. Hébert, “Learn You Some Erlang for Great Good!”
[31] R. Cartwright and M. Fagan, “Soft typing,” ACM SIGPLAN Not., vol. 39, no. 4, p. 412,
2004.
[32] C. Meiklejohn and P. Van Roy, “Selective Hearing: An Approach to Distributed, Eventually
Consistent Edge Computation,” 2015.

https://en.wikipedia.org/wiki/Program_slicing
https://github.com/erlang/otp/blob/maint/lib/dialyzer/doc/src/dialyzer.xml

