Point Of No Local Return:

The Continuing Story Of Erlang
Type Systems

Zeeshan Lakhani

Papers We Love, Basho Technologies
@zeeshanlakhani

I don’t know nothin

I don’t know nothin

e Konstantinos Sagonas

I don’t know nothin

e Konstantinos Sagonas
e John Hughes

I don’t know nothin

e Konstantinos Sagonas
e John Hughes
e Joe Armstrong

I don’t know nothin

e Konstantinos Sagonas
e John Hughes

e Joe Armstrong
e Tobias Lindahl

I don’t know nothin

e Konstantinos Sagonas
e John Hughes

e Joe Armstrong

e Tobias Lindahl

e Maria Christakis

I don’t know nothin

e Konstantinos Sagonas
e John Hughes

e Joe Armstrong

e Tobias Lindahl

e Maria Christakis
e Joe Devivo

I don’t know nothin

e Konstantinos Sagonas
e John Hughes

e Joe Armstrong

e Tobias Lindahl

e Maria Christakis

e Joe Devivo

® JNnore...

Don't surround yourself with yourself,

Move on back two squares,

Send an Instant Karma to me,

Initial 1t with loving care

Don't surround

Yourself.

'Cause it's time, it's time in time with your time and
1ts news 18 captured

For the queen to use.

Static Strong Type System - SML

datatype suit = Clubs | Diamonds | Hearts | Spades

datatype rank = Jack | Queen | King | Ace | Num of int
type card = suit ™ rank

fun card color card =

case card of

(Clubs,) => Black
(Spades,) => Black
(Diamonds,) => Red
(Hearts,) => Red

Dynamic Strong Typingo

>6+ "1".
** exception error: an error occurred when
evaluating an arithmetic expression
in operator /2
called as 6 + "1"

p1110101 Jaden Smith Coding @jaden_coding - 23 Feb 2015

ﬁ)ﬁ},iﬁ | Hope Erlang Wins An Oscar. Best Type System.

00010011
& Inreply to Tim Dysinger

M Martin Kristiansen @fold_right - 5 Oct 2014
~ @dysinger dear Erlang can | plz has a strong type system ;)

Cons T Ahs @lisztspace - Feb 15

@jlouisb666 agreed, as long as it is reasonable. Bolting on a type system
afterwards is always quite challenging.

View conversation

& Inreply to LuadlT To Quit

VP, Unpopular Things @potsdamnhacker - 11 Jun 2015

@warrenhenning @olix0r | would argue Erlang + Dialyzer is superior to Go's
type system, but optional.

View conversation

Jesper L. Andersen ©@jlouis666 - Jan 15

To give Erlang a type system requires you to solve a nontrivial problem of
dynamic multi-party session types first.

23 9 ¥ 14

“Dynamic typing s but a special case of static typing, one
that limats, rather than liberates, one that shuts down

opportunities, rather than opening up new wvistas. Need I

say 1t?
— Bob Harper

“All 1s fair in love and war, even trying to add a
static type system in a dynamaically typed
programmaing language’ps

— Lindahl and Sagonas

Gradual Typing

“Siek and Taha [2006] coined the term gradual

typing to describe a theory for integrating static
and dynamic typing within a single language that 1)
puts the programmer in control of which

reqgions of code are statically or dynamically typed
and 2) enables the gradual evolution of code

between the two typing disciplines. i
— Siek, et al.

(struct pt (|x : Real| |y : Reall))
(: distance (-> pt pt Real))

(define (distance pl p2)
(sart (+ (sqr (- (pt-x p2) (pt-x pl)))
(sqr (- (pt-y p2) (pt-y p1))))))

(struct pt (|x : Real| |y : Reall))
(: distance (-> pt pt Real))

(distance "foo" 4)

stdin::189: Type Checker: type mismatch
expected: pt
given: String
in: "foo"
context...:
269
/Applications/Racket /share /pkgs /typed-racket-lib /typed-racket /
typecheck /tc-app/tc-app-main.rkt:91:12: for-loop
parse-loopd59
/Applications/Racket /share /pkgs /typed-racket-lib /typed-racket /
typecheck /tc-app /tc-app-main.rkt:68:0: tc/app-regular
/Applications/Racket /share /pkgs /typed-racket-lib /typed-racket /
typecheck /tc-expr-unit.rkt:287:0: tc-expr
/Applications/Racket /share /pkgs /typed-racket-lib /typed-racket /
typecheck /tc-toplevel.rkt:560:0: tc-toplevel-form
templ9
/Applications/Racket /collects /racket /private/misc.rkt:87:7

I: A Subset of the Past

e €: T

e ¢ is well-typed, meaning that its
components fit together properly according
to the rules (e.g., operators are applied to
the right kinds of arguments), and

e T: when e is evaluated, and its evaluation
terminates, it produces a value described
by T.

Soft Typing

- Type inference applied to dynamically typed
languages

- Foundational Works: Cartwright and Fagan’s
Soft Typingsy & Aiken and Wimmers’s Type

Inclusion on Constraints and Type Inferencep

- top type can be used in the absence of meaningful
ordinary types:;

Principal Types

Finding a way to represent all all possible typings
for a term

Foundational Work: Jim’s What are principal

typings and what are they good for?s

Not only a principal type but also the associated

environment

type signature only holds if the arguments in an
application are subtypes of the arguments in the

signature.

April 24, 1996
ISSN 1100-1836

A Prototype
of a
Soft Type System
for
Erlang

Anders Lindgren

First Runs

foo(X) -> [X | X].

bar([X | X]) -> X.

foo(a) = cons(a, a)
bar (cons(a,a)) — «

First Runs cont.

1996 Soft-Type system prototype by Lindgren

Data Type (Collection) representing a mapping from
variables to types, defined by Meet (GLB - combing

variables in diff. expressions) and Join operations (LUB -

for when inferring types with sub-clauses, like case)

Constraint solver (Illyria) could not represent types
dealing with individual atoms. Had issues simplifying non-
canonical representations: intU (intUfloat) to intU float

1998 - Armstrong/Arts - declaration files generate html

pages... the specification web

A Practical Subtyping System For Erlang

Simon Marlow

Philip Wadler

simonm@dcs.gla.ac.uk wadler@research.bell-labs.com

University of Glasgow

Abstract

We present a type system for the programming language Er-
lang. The type system supports subtyping and declaration-
free recursive types, using subtyping constraints. Our sys-
tem is similar to one explored by Aiken and Wimmers,
though it sacrifices expressive power in favour of simplicity.
We cover our techniques for type inference, type simplific-
ation, and checking when an inferred type conforms to a
user-supplied type signature, and report on early experience
with our prototype.

Bell Labs, Lucent Technologies

based on row variables, as introduced by Wand [Wan87],
and used as the basis of the soft type system for Scheme
by Cartwright, Fagan, and Wright [CF91, WC94]. It turns
out that the row variable system rejects some programs that
seem quite natural to us, and the circumlocutions we had
to go through to construct an equivalent program that was
well typed struck us as hard to explain. This isn’t a prob-
lem for soft typing systems, where the goal is to improve per-
formance by removing run-time type checking, and therefore
maximum information is of greater benefit than a natural
notion of typing.

The Marlow / Wadler Joint

- Wadler had a 1-year sab

pbatical and was going to write a

type system for Erlang

- Based on Aiken/Wimmers Type Inclusion Constraints and

Type Inference

- support of recursive types and disjoint unions

- Had type annotation system akin to Dialyzer/Typer specs

- Disappointing results: Lack of process types/inter-process

checks; worked only on a subset of Erlangj

subtyping: try to solve sets of constraints

Of the f()rm o C B[l@]

unification (Hindley-Milner): solve

constraints of the form o = B

Object
[\

String Other

v/
(null)

any()

N T—

atom() number() port() pid() ref() (..)—>T binary() possibly_improper_list(T) tuple()

bool() float() integer() O—=>T (T)—>T....
’aa’.... 'true’ ’false’ ’ok’....

ne_p_improper_list(T) list(T) {}
none()

|

nonempty_list(T) |]

Unification is literally the process of looking at each of
the constraints and trying to find a single type which
satisfies them allp

To unify two type expressions is to find substitutions
for all type variables that make the expressions
identical

Wright /Cartwright modified Hindley-Milner typing to
accommodate union types and subtyping when

creating a soft typing system in Schemey

Success?

and(true, true) -> true;
and(false,) -> false;
(_, false) -> false.

(

(

(

and

and(true, true) -> true;
and(false, X) -> false;
and (X, false) -> false.

and(any(), false) -> true + false.

and(X,Y) ->
let Z = (case Y of false -> false end) in
case X of

true ->
case Y of
true -> true;
X -> 7
end;
false -> false;
X -> 7
end.

-spec and(_,) -> boolean().

A soft-typing system for Erlang

Sven-Olof Nystrom
Department of Information Technology,
Uppsala University, Sweden

svenolof@csd.uu.se

ABSTRACT

This paper presents a soft-typing system for the program-
ming language Erlang. The system is based on two concepts;
a (forward) data flow analysis that determines upper ap-
proximations of the possible values of expressions and other
constructs, and a specification language that allows the pro-
grammer to specify the interface of a module. We examine
the programming language Erlang and point to various as-
pects of the language that make it hard to type. We present
experimental result of applying the soft-typing system to
some previously written programs.

A static type system added to an existing dynamically
typed programming language is sometimes referred to as a
soft-typing system. Generally speaking, a soft typing system
might serve two purposes; it can produce type information
to help compiler optimizations, and it can be used, just like
a static type system, to help the programmer find bugs and
inconsistencies in the program.

When used as a development tool, a soft typing system
can either be used when programs are written from scratch,
or applied to existing programs. Any soft typing system will
be sensitive to the choice of data representation and control

Another Soft Typing System

- Uses dataflow analysis to compute for each variable and subexpression in
the program, an approximation of the set of possible values.

- (enerates type expressions and Matches terms against expressions
Call(f, I, ¢)= ¢’ to allow for typed polymorphism
- Abstract, Public, Unsafe Types (mbox -> mailbox receives)

- “It turns out that specifying the interaction of an Erlang process is
rather difficult”

- Similar specification language, based on Marlow/Wadler’s paper,

separates out spec files from .erl files

- Tons of Noise (must annotate at all interface points)

Typing Erlang

John Hughes, David Sands, Karol Ostrovsky

December 12, 2002

Abstract

Type systems for concurrency express vital properties of concurrent and distributed pro-
grams, such as deadlock-freeness. These systems have grown more sophisticated with time,
but unfortunately most of them apply to toy programming languages. At the other end of the
spectrum, there is Erlang — an open souce functional and concurrent language with a number
of successful commercial applications, but lacking a good type system. Attempts have been
made to define a type system for Erlang, but these have ignored its concurrency, distribution
and fault-tolerance features.

The goal of this project is to develop a type system for Erlang that can be used to
successfully type check existing large Erlang programs, and used as a substrate for efficient
type-based program analyses. Our approach is also inspired by recent developments of the
Haskell type system, which now supports a number of advanced features (e.g. polymorphic
recursion and existential types). Each of these features poses problems for type inference, but
succumbs easily to type checking. Haskell’s design has shown that it is possible to combine
explicit type annotations, for the checkable parts, while still using type inference for most
of the program. By using the same approach for Erlang we hope to combine efficiency and
power.

how do we ensure that the receive
expressions 1n a process body expect
messages of the correct type?

' = e : 1T receiving n

makeref and guaranteeing that replies

are sent to the correct process.

II: The Tao of Now

Detecting Software Defects in Telecom Applications
Through Lightweight Static Analysis: A War Story

Tobias Lindahl and Konstantinos Sagonas

Computing Science, Dept. of Information Technology, Uppsala University, Sweden
{Tobias.Lindahl,Konstantinos.Sagonas}@it.uu.se

Abstract. In safety-critical and high-reliability systems, software development
and maintenance are costly endeavors. The cost can be reduced if software er-
rors can be identified through automatic tools such as program analyzers and
compile-time software checkers. To this effect, this paper describes the architec-
ture and implementation of a software tool that uses lightweight static analysis to
detect discrepancies (1.e., software defects such as exception-raising code or hid-
den failures) in large commercial telecom applications written in Erlang. Our tool,
starting from virtual machine bytecode, discovers, tracks, and propagates type in-
formation which is often implicit in Erlang programs, and reports warnings when
a variety of type errors and other software discrepancies are identified. Since the
analysis currently starts from bytecode, it 1s completely automatic and does not
rely on any user annotations. Moreover, it is effective in identifying software de-
fects even in cases where source code is not available, and more specifically in
legacy software which is often employed in high-reliability systems in operation,
such as telecom switches. We have applied our tool to a handful of real-world
applications, each consisting of several hundred thousand lines of code, and de-
scribe our experiences and the effectiveness of our techniques.

Hello Dialyzer

Sound for defect detection

Never generate FALSE ALARMS (POSITIV!

-]
P
N—"

Adapt to Erlang Code Style
Icode bytecode translation (represented as a CFG)

Local analysis via PLT (Persistent Lookup Table) for intra-

module/cross-module mappings

disjoint union of prime types

if 1s_cons(v0)

test(X) ->
case X of
[H|T] when islist(X) ->
{H, T};
- ->

X + 1
end.

v2 := unsafe_hd(v0)
v3 := unsafe_tl(v0)
if 1s_list(v0)

true N

v4 := mktuple(v2, v3)
return(v4)

false

if 1s_cons(v0)

(a) ERLANG code

vS:="+"(v0, 1)
return(vy)

true false
v2 := unsafe_hd(v0) vy :="+7(v0, 1)
v3 :=unsafe_tl(v0) return(vs)

v4 := mktuple(v2, v3)
return(v4)

(b) Icode w/o optimization

(¢) Icode w optimization

Fig. 1. ERLANG code with a redundant type guard.

Experience from Developing the Dialyzer:
A Static Analysis Tool Detecting Defects in Erlang Applications

Konstantinos Sagonas

Department of Information Technology
Uppsala University, Sweden

kostis@it.uu.se

Abstract

We describe some of our experiences from developing the Dialyzer
defect detection tool and overseeing its use in large-scale com-
mercial applications of the telecommunications industry written in
Erlang. In particular, we mention design choices that in our opin-
ion have contributed to Dialyzer’s acceptance in its user commu-
nity, things that have so far worked quite well in its setting, the
occasional few that have not, and the lessons we learned from in-
teracting with a wide, and often quite diverse, variety of users.

strongly encourages rapid prototyping and performing unit testing
early on in the development cycle. Like many functional language
implementations, the Erlang/OTP system comes with an interac-
tive shell where Erlang modules can be loaded and the functions in
them can easily be tested on an individual basis by simply issuing
calls to them. If an exception occurs at any point, it is caught and
presented to the user together with a stack trace which shows the
sequence of calls leading to the exception. Many errors are elimi-
nated in this way. Of course, testing of multi-thousand (and often
million) LOC commercial applications such as e.g. the software of

“laissez-faire style of programming’

—Konstantinos Sagonas

TYPER: A Type Annotator of Erlang Code

Tobias Lindahl

Konstantinos Sagonas

Department of Information Technology
Uppsala University, Sweden

{tobiasl, kostis} @it.uu.se

Abstract

We describe and document the techniques used in TYPER, a
fully automatic type annotator for ERLANG programs based on
constraint-based type inference of success typings (a notion closely
related to principal typings). The inferred typings are fine-grained
and the type system currently includes subtyping and subtype poly-
morphism but not parametric polymorphism. In particular, we de-
scribe and illustrate through examples a type inference algorithm
tailored to ERLANG’s characteristics which is modular, reasonably
fast, and appears to scale well in practice.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]. Studies of Program Constructs—Type struc-
ture; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation

General Terms Languages, Theory

Keywords constraint-based type inference, success typings, sub-
typing, principal typings, Erlang

are that it is completely automatic, never rejects any programs that
are accepted by the BEAM compiler, is fast, scalable and reason-
ably precise, and performs reasonably even when only part of the
code base is available.

The rest of the paper is structured as follows. In the next sec-
tion we briefly review the basis of our work in order to put it into
context. The next two sections form the main body of this paper
describing TYPER’s design goals and basic usage (Section 3) and
the type inference algorithm on which TYPER relies in Section 4
which forms the core of this paper. Consequences of inferring suc-
cess typings for a language with side-effects such as ERLANG are
discussed in Section 5. A taste of TYPER’s performance appears
in Section 6 and the paper ends by reviewing some closely related
work and with concluding remarks.

2. The Basis of our Work
2.1 The Erlang language and Erlang/OTP
ERLANG [2] is a strict, dynamically typed functional programming

disjoint unions: T:1+T2 is a “union” of T1 and T21in the

sense that its elements include all the elements of T1 and T2y

e A type is the greatest lower bound of its subtype constraints. To
solve a disjunction, all its parts are solved and then the solution
is the least upper bound (sup or supremum) of the solutions to
each disjunctive part.ps

o (TxC 42 A Tout C 'true’) v (tou C ’false’)

o Tout C sup(’true’, false’) = bool()
Tx C sup(42, any()) = any|()

set M
—.—.—.—.—.-.——.—.—09-

SN/

supremum = least upper bounds of M
upper bound

%% File: "./and y.erl"

Y070 =mmmmmmmmmmm e

-spec andy(_,) -> boolean().
-spec module info() -> any().

—)

-spec module info() -> any().

%% File: ". /foo.erl"

R

-spec length 2(|any()|) -> non_neg integer().

-spec length 3(|any()|,non neg integer()) -> non neg integer().
-spec soup(1..10,|atom()]) -> [atom() | integer()].

-spec dejour() -> none().

-spec inc(X) -> X when is_subtype(X,number()).

-spec module info() -> any().

-spec module info() -> any().

%% File: "./hello.erl"

Y0Y0 ==mmmmmmmmmm e

-spec hello world() -> 'hello".
-spec world(pid()) -> 'hi'.

-spec module info() -> any().
-spec module info() -> any().

Typer Inference is Compositional
Find most general success typings under constraints
Never rejects programs accepted by BEAM

Uses forward data-flow analysis to apply a more refined type, using

knowledge of call sites

-module(m1). -export(|main/1]).
main(N) when is integer(N) -> tag(N-+42).
tag(N) -> {’tag’, N}.

-module(m2). -export(|main/1]).
main(N) when is integer(N) -> {tag(N+42), fun tag/1}.
tag(N) -> {’tag’, N}.

Use bottom type (none(), no return()) if conjunction is

unsatisfiable (no solution)

Practical Type Inference Based on Success Typings

Tobias Lindahl !

Konstantinos Sagonas

1,2

! Department of Information Technology, Uppsala University, Sweden
? School of Electrical and Computer Engineering, National Technical University of Athens, Greece

{tobiasl kostis}@it.uu.se

Abstract

In languages where the compiler performs no static type checks,
many programs never go wrong, but the intended use of functions
and component interfaces 1s often undocumented or appears only
in the form of comments which cannot always be trusted. This of-
ten makes program maintenance problematic. We show that it is
possible to reconstruct a significant portion of the type informa-
tion which 1s implicit in a program, automatically annotate func-
tion interfaces, and detect definite type clashes without fundamental
changes to the philosophy of the language or imposing a type sys-
tem which unnecessarily rejects perfectly reasonable programs. To
do so, we introduce the notion of success typings of functions. Un-
like most static type systems, success typings incorporate subtyping
and never disallow a use of a function that will not result in a type
clash during runtime. Unlike most soft typing systems that have
previously been proposed, success typings allow for compositional,
bottom-up type inference which appears to scale well in practice.
Moreover, by taking control-flow into account and exploiting prop-
erties of the language such as its module system, success typings
can be refined and become accurate and precise. We demonstrate
the power and practicality of the approach by applying it to Erlang.
We report on our experiences from employing the type inference
algorithm, without any guidance, on programs of significant size.

Tried to make it little by little,
tried to make it bit bv bit on mv own. . .

and relatively uneventful activity, at least initially. The occasional
frustrations of having to convince the type system that one really
knows what she is doing are avoided. Also, since type declara-
tions and annotations need not be typed (in), program development
can progress more rapidly. Unfortunately, this freedom of expres-
sion comes with a price. Significantly less typos and other such
mundane programming errors are caught by the compiler. More
importantly, the freedom of not stating one’s intentions explicitly,
considerably obstructs program maintenance. In many cases, it is
extremely difficult to recall or decipher how a particular piece of
code — often written by some other programmer years ago — can
be used. Comments are unreliable, often cryptic and confusing, and
more often than not rotten. The programmer is much better off if
aided by techniques and tools that can help in such situations.
Over the years, many researchers have tried to address such is-
sues. Some have tried to impose and/or tailor a static type system
to dynamically typed languages. Despite the technical depth and
level of sophistication in many of the proposals, it is fair to say
that so far static type systems in dynamically typed languages have
enjoyed only limited success in practice. It seems that imposing a
static type discipline on a language which was originally designed
without one in mind is a Sisyphean task. Other researchers have
taken a more low-profile approach and have built useful and suc-
cessful type inference tools for different programming language

paradigms. Among these, we mention soft typing systems [13] and
the DrScheme R1 develonment environment for Scheme the Cliao

%07 (list(), any())—any()

length 3([], N) -> N;

length 3(| |T|, N) ->
length 3(T, N-+1).

Core Erlang

'length 2'/1 =
%% Line 27
fun (_ cor0) ->
apply 'length 3'/2
(__cor0, 0)
'length 3'/2 =
%% Line 29
fun (_corl, corQ) ->
case < corl, cor0> of
<||,N> when 'true' ->
N
%% Line 30
<|_cor5|T|,N> when 'true' ->
let < cor2> =
call 'erlang':'+'
N, 1)
in apply 'length 3'/2
(T, cor2)
(< cor4, cord3> when 'true' ->
(primop "match _fail'
({'function clause', cor4, cor3})
-| [{'function name',{'length 3'2}}|)
-| ['compiler generated'|)
end

Core Erlang (IR)

e == X |cle,...,en) | erlea,....en) | f |
let z =e; in ey |
letrec 1 = f1,...,&n = fnine |
case e of (p1 — b1);...; (pn — bn) end

f — fun(:cl,...,xn) — €

D = p' when g

/ / /
p = x| cpl,...,Pn)
g = grand gz | *1 = x2 | true | is_atom(z) |

is_integer(x) | ...

“We are instead interested in capturing the biggest set of terms for
which we can be sure that type clashes will definitely occur. Instead
of keeping track of this set, we will design an algorithm that infers
its complement, a function’s success typing. A success typing 1s a
type signature that over-approximates the set of types for

which the function can evaluate to a value.”
— Lindahl and Sagonas

“The basic i1dea 1s to iteratively solve all constraints
in a conjunction until either a fixpoint is reached
or the algorithm counters some type clash and fails

by assigning the type none() to a type expression.
— Lindahl and Sagonas

Union Limit 4+ Depth-k abstraction for termination

Infers success typings for the functions by analyzing its nodes
(strongly connected components of the function call graph in a
bottom-up fashion)

Not using conditional or intersection types... so

%% (integer() v list())—integer() u atom()
foo(X) when is integer(X) -> X + 1.
foo(X) -> list to atom(X).

looks like
Vo.(a)—(integer()? (o n integer()))

u (atom()?(a n list()))
where {a C integer() u list()}

A Language for Specifying Type Contracts in Erlang
and its Interaction with Success Typings

Miguel Jiménez

Tobias Lindahl

Konstantinos Sagonas

Department of Information Technology
Uppsala University, Sweden

migueljimg@gmail.com, {tobiasl kostis}Qit.uu.se

1. Introduction

For quite some time now, programs in ERLANG have been devel-
oped without any mention of types which describe their intended
use. With the advent of automatic documentation tools such as
Edoc many ERLANG programmers have discovered the usefulness
of types as documentation. However, while type annotations given
as comments are better than no annotations at all, they tend to rot as
they are not verified. In addition, the usefulness of the type anno-
tations 1s restricted to the programmer’s eyes, and without a stan-
dardized type language, tools for static analysis such as Dialyzer
cannot take advantage of the information.

In this work, we propose a contract language that can serve
both as documentation in the style of Edoc, and as a guidance to
tools such as Dialyzer and TypEr. The contracts are in the form
of success typings, a framework developed for expressing type
information in dynamically typed programming languages. Our
contracts are designed for ease of use and clarity, but also to provide

2. Success Typings

Using type information in dynamically typed languages is often
called soft typing, a term coined by Cartwright and Fagan [1].
Soft typing encompasses various approaches, but commonly soft
type systems use a static type domain extended with some way of
expressing dynamic types, either to eliminate dynamic type tests or
to find type clashes in the code. Soft type systems are by definition
not allowed to reject programs, but they can bring the attention of
the user to places in the code where there is a risk for a type clash.

If a soft type system reports all possible points in the code where
there is a risk of a type error, we say that the reports (or warnings)
are complete. If, on the other hand, the soft type system reports
only definite type clashes we call the warnings sound. With these
definitions, the warnings cannot be both sound and complete for a
practical programming language, since this is the same problem as
having a sound and complete type inference.

In dynamically typed languages type safety is guaranteed by

I Success Typing

Dynamic Typing

Static Typing

%% is_subtype(X, atom) =:= X :: atom()
-spec inc(X) -> X when is subtype(X, atom()).
inc(X) when is_integer(X) -> X + 1;

inc(X) when is float(X) -> X + 1.0.

typer: Error in contract of function foo:inc/1
The contract is: (X) -> X when is subtype(X,atom())
but the inferred signature is: (number()) -> number()

Contracts allow for more refined analysis/success types

Function types and polymorphic contracts
-spec(all/2 :: (((T) -> bool(), [T]) -> bool())).
or
-spec id(X) -> X when X :: tuple().

Support for contract overloading

-spec(inc/1 :: ((integer()) -> integer());
((float()) -> float())).

inc(X) when is integer(X) -> X + 1;

inc(X) when is float(X) -> X + 1.0.

Gradual Typing of Erlang Programs: A Wrangler Experience

Konstantinos Sagonas

Daniel Luna

School of Electrical and Computer Engineering, National Technical University of Athens, Greece
Department of Information Technology, Uppsala University, Sweden

kostis@cs.ntua.gr

Abstract

Currently most Erlang programs contain no or very little type in-
formation. This sometimes makes them unreliable, hard to use, and
difficult to understand and maintain. In this paper we describe our
experiences from using static analysis tools to gradually add type
information to a medium sized Erlang application that we did not
write ourselves: the code base of Wrangler. We carefully document
the approach we followed, the exact steps we took, and discuss
possible difficulties that one 1s expected to deal with and the effort
which is required in the process. We also show the type of soft-
ware defects that are typically brought forward, the opportunities
for code refactoring and improvement, and the expected benefits
from embarking in such a project. We have chosen Wrangler for
our experiment because the process is better explained on a code
base which 1s small enough so that the interested reader can retrace
its steps, yet large enough to make the experiment quite challeng-
ing and the experiences worth writing about. However, we have
also done something similar on large parts of Erlang/OTP. The re-
sult can partly be seen in the source code of Erlang/OTP R12B-3.

daniel.luna@it.uu.se

type errors remain in the code. Often these errors appear in the
not so commonly executed paths such as those handling serious
error situations. Also, type information in the form of comments is
often unreliable as it is not checked regularly by the compiler. Such
documentation sooner or later is bound to suffer from code rot.
For a number of years now we have been trying to amelio-
rate this situation by developing and releasing tools that support
and promote a different mode of program development in Erlang.
Namely, one where most typos, type errors, interface abuses and
other software defects are 1dentified automatically using whole pro-
gram static analysis rather than testing, and where type information
is automatically added in the program code, becomes a part of the
code, 1s perhaps manually refined by the programmer and is sub-
sequently automatically checked for validity after program mod-
ifications. What’s interesting in our approach is that all these are
achieved without imposing any (restrictive) static type system in
the language. Instead, programs can be typed as gradually as de-
sired and the programmer has total control of the amount of type
information that she wishes to expose and publicly document.

™

- Testing real projects and exposing type information
- Add explicit type guards in key places in the code.

- Add type declarations and contracts

Compilers as Assistantsp

-= TYPE MISMATCH tmp.elm
The argument to function ‘getFullName' is causing a mismatch.

21| getFullName

22| {

23| firstName = "Sam”,

24 | lastName = "Sample”,

25|

26 | hairColor = "Brown”,

27| eyeColor = "Brown”,

28 |

29| address = "1337 Elite st”,
30| phoneNumber = "867-5309",
31| email = "foo@bar.com",
32|

33| pets = 2

34| }

Function ‘getFullName' is expecting the argument to be:
{ .., phoenNumber : .. }
But it 1is:
{ .., phoneNumber : .. }
Hint: I compared the record fields and found some potential typos.

phoenNumber <-> phoneNumber

%}fﬁ%ms as Assistantsg,

-= TYPE MISMATCH tmp.elm
The argument to function ‘getFullName' is causing a mismatch.

21| getFullName

22| {

23| firstName = "Sam”,

24 | lastName = "Sample”,

25|

26 | hairColor = "Brown”,

27| eyeColor = "Brown”,

28 |

29| address = "1337 Elite st”,
30| phoneNumber = "867-5309",
31| email = "foo@bar.com",
32|

33| pets = 2

34| }

Function ‘getFullName' is expecting the argument to be:
{ .., phoenNumber : .. }
But it 1is:
{ .., phoneNumber : .. }
Hint: I compared the record fields and found some potential typos.

phoenNumber <-> phoneNumber

Precise Explanation of Success Typing Errors*

Konstantinos Sagonas

Department of Information Technology
Uppsala University, Sweden

kostis@it.uu.se

Abstract

Nowadays, many dynamic languages come with (some sort of) type
inference in order to detect type errors statically. Often, in order
not to unnecessarily reject programs which are allowed under a dy-
namic type discipline, their type inference algorithms are based on
non-standard (i.e., not unification based) type inference algorithms.
Instead, they employ aggressive forwards and backwards propaga-
tion of subtype constraints. Although such analyses are effective
in locating actual programming errors, the errors they report are
often extremely difficult for programmers to follow and convince
themselves of their validity. We have observed this phenomenon in
the context of Erlang: for a number of years now its implementa-
tion comes with a static analysis tool called Dialyzer which, among
other software discrepancies, detects definite type errors (i.e., code
points that will result in a runtime error if executed) by inferring
success typings. In this work, we extend the analysis that infers
success typings, with infrastructure that maintains additional infor-
mation that can be used to provide precise (i.e., minimal) explana-
tions about the cause of a discrepancy reported by Dialyzer using
program slicing. We have implemented the techniques we describe
in a publicly available development branch of Dialyzer.

Josep Silva Salvador Tamarit

Department of Information Systems and Computation
Universitat Politecnica de Valeéncia, Spain

{jsilva,stamarit}@dsic.upv.es

explicit type annotations on expressions, or to provide type signa-
tures for functions. This ability to develop programs rapidly is cur-
rently exploited by many modern dynamic languages used in indus-
try but it comes with a cost: many errors that would be caught by a
static type system are detected only at runtime, potentially making
programs written in dynamic languages less reliable. To amelio-
rate the situation, many dynamic languages nowadays come with
various sorts of type inferencing approaches and tools, aiming to
detect most type errors statically rather than dynamically [2, 5, [7].
Such tools allow these languages to combine the expressivity and
flexibility of dynamic typing with the robustness of static typing.

Given a program P, we consider the type of an expression as
the (possibly infinite) set of values to which this expression can be
evaluated using P. Given two expressions ey, €;, such that e, is a
subexpression of e,, we say that e; produces a type error if the type
of e, 1s 71, the type expected from e, by e, is 75, and 7y N 75, = .
Therefore, in this work the term type error refers to a specific point
in the source code of the program.

Example 1. Assume that the following three Erlang functions
appear in a file ex1.erl (for the time being ignore the boxes).

1 main(A) -> 8 [f(X) -> X+1|.

main(X) ->
case X of
2 ->
case X of
1 -> a;
2 -> b;
Y ->Y
end
end.

> dialyzer --slice

exd.erl ex3.erl:9: The pattern 1 can never match the type 2
discrepancy sources:

exd.erl:6 case X of <= Expressions: X

exd.erl:7 2 -> <= Expressions: 2

exd.erl:8 case X of <= Expressions: X

exd.erl:9 1 -> a; <= Expressions: 1

exd.erl:11: The variable Y can never match since previous clauses
completely covered the type 2 discrepancy sources:

exd.erl:6 case X of <= Expressions: X

exd.erl:7 2 -> <= Expressions: 2

exd.erl:8 case X of <= Expressions: X

exJ.erl:10 2 -> b; <= Expressions: 2

exd.erl:11 Y -> Y <= Expressions: Y

Explaining Success

In computer programming, program slicing is the
computation of the set of programs statements, the
program slice, that may affect the values at some point
of interest, referred to as a slicing criterion. Program
slicing can be used in debugging to locate source of
errors more easilyj.

(fun(x?) ->
(case X4 of
(26 when true’)’s ->
(case X" of
(111 when trueli2)f0 —> ghs
(2/15 when truelis)4 —> pl7
(Y9 when true20)is _> yhi
end)’s
end)’3
end)’! .

Erlang Erlang

Slice

Compilation Decompilation

CORE
Erlang

Labelling

Parameterized
Program
Slicing

Constraint Constraint
Generation Solving

Detection of Asynchronous Message Passing
Errors Using Static Analysis

Maria Christakis! and Konstantinos Sagonas®:?

! School of Electrical and Computer Engineering,
National Technical University of Athens, Greece
? Department of Information Technology, Uppsala University, Sweden
{mchrista,kostis}@softlab.ntua.gr

Abstract. Concurrent programming is hard and prone to subtle errors.
In this paper we present a static analysis that is able to detect some
commonly occurring kinds of message passing errors in languages with
dynamic process creation and communication based on asynchronous
message passing. Our analysis is completely automatic, fast, and strikes
a proper balance between soundness and completeness: it is effective in
detecting errors and avoids false alarms by computing a close approx-
imation of the interprocess communication topology of programs. We
have integrated our analysis in dialyzer, a widely used tool for detecting
software defects in Erlang programs, and demonstrate its effectiveness
on libraries and applications of considerable size. Despite the fact that
these applications have been developed over a long period of time and are
reasonably well-tested, our analysis has managed to detect a significant
number of previously unknown message passing errors in their code.

-Wrace conditions***

- Misuse of concurrency primitives can lead to defects around RN, RW,
RU, SR.
- BRN: Receive with no messages
- RW: Receive of the wrong kind
- RU: Receive with unnecessary patterns (receive w/
never match clauses)
- SR: Send nowhere received

- Collects pairs of program points possibly involved in a race condition,
inspecting every possible execution path, traveling the CFG w/ a
depth-first search

- Sharing/alias component to determine if pid refers to the correct

process in CFG traversal

- Special care filtering out false alarms

-export([start /0]).

start() ->
Pid = spawn(fun pong/0),
ping(Pid).

ping(Pid) ->
Pid ! {self(), ping},

receive pong -> pang end. %% incorrect false alarm init

pong() ->
receive {Pid, ping} ->
Pid ! pong
end.

<tag><c><!|CDATA[|-Wrace conditions||></c>***< /tag>
<item>Include warnings for possible race conditions. Note that the
analysis that finds data races performs intra-procedural data flow
analysis and can sometimes explode in time. Enable it at your own risk.

< /item>|2g

Frlang is not a strict side-effect-iree functional
language but a concurrent languagen

Thinking about Concurrency
QuickCheck/PULSE (random scheduling)

Concuerror and Model Checking tools

I11: Playing a Session or N

Session Types

- Session types were designed as a typing discipline

for process calculi based on the n-calculus

- Have been called protocols for many years in

network and other engineering disciplines which

need to treat such patterns.

- Linearity (related to linear logic) is important as

channels must not be duplicated, as the
duplication of channels will result in the

loss of

safety guarantees (e.g. must be use exact.

y once)

Session Typing for a Featherweight Erlang

Dimitris Mostrous and Vasco T. Vasconcelos

LaSIGE, Faculty of Sciences, University of Lisbon

Abstract. As software tends to be increasingly concurrent, the
paradigm of message passing is becoming more prominent in computing.
The language Erlang offers an intuitive and industry-tested implementa-
tion of process-oriented programming, combining pattern-matching with
message mailboxes, resulting in concise, elegant programs. However, it
lacks a successful static verification mechanism that ensures safety and
determinism of communications with respect to well-defined specifica-
tions. We present a session typing system for a featherweight Erlang
calculus that encompasses the main communication abilities of the lan-
guage. In this system, structured types are used to govern the interaction
of Erlang processes, ensuring that their behaviour is safe with respect
to a defined protocol. The expected properties of subject reduction and
type safety are established.

Session Typing for a Featherweight Erlangq
- Ensure message correlation (correlation sets) using
unique references via make ref().
- Operates only over a minimal fragment of Erlang

- Only supports binary sessions, not multiparty ones

Monitoring Erlang/OTP Applications using Multiparty

Session Types

Simon Fowler

Monitored Session Erlang:.

- Erlang’s communication patterns are informally defined.
How can we apply program logic to guarantee

communication safety?

- in MSE, monitors are first class and monitor logic is

separated (separate processes) from application/node logic

- The semantics of monitored networks are rejection-based:
should a principal attempt to send a message which does

not match the specification, the message is not delivered

- Session fidelity proves that safety and transparency hold

under reduction.

Scribble

module src.com.simonjf.ScribbleExamples.PingPong.PingPong;

global protocol PingPong(role A, role B) {

rec loop {
ping() from A to B;
pong() from B to A;

continue loop:;

;
;

Scribble

module src.com.simonjf.ScribbleExamples.PingPong.PingPong A;

local protocol PingPong at A(role A,role B) {
rec loop {
ping() to B;
pong() from B;

continue loop;

;
;

Scribble

module src.com.simonjf.ScribbleExamples.PingPong.PingPong B;

local protocol PingPong at B(role A,role B) {
rec loop {
ping() from A;
pong() to A;
continue loop;

;
;

Scribble cont.

C'FSMs

module src.com.simonjf.scribbletest. TwoBuyer:;

nn

type <erlang> "string" from "" as String;

type <erlang> "integer" from ""

as Integer;
global protocol TwoBuyers(role A, role B, role S) {
title(String) from A to S;
quote(Integer) from S to A, B;
// TODO: Loop recursion here
share(Integer) from A to B;
choice at B {
accept(String) from B to A, S;
date(String) from S to B;
}or {
retry() from B to A, S;
// TODO Loop here
}or {
quit() from B to A, S;
}

}

A conversation key is a 3-tuple (M,R,S), where M is the
process ID of the monitor, R is the name of the role that the
participant is playing in the session, and S is the process 1D

of the conversation instance process for the session.

Session Actor

Message
(“Buyer”, SID 1, “buy”)

Monitor:

L1
é Session 1, Role “Buyer”

Monitor:
Session 2, Role “Warehouse”

User Logic Process <€—Message(“Buyer”, SID 1, “buy”)—

User Logic Process Monitor Process

__1: Start conversation_instance
process

TwoBuyer
Instance

Spawn (TwoBuyer,
PID, A)

_ 2: Retrieve monitors and candidate _
actors

[(A: M),
(B: Mb))
S: Ms)]

Protocol Registry

(r

TwoBuyer

Instance

[(A: [PID1, PID2]),
(B:[PID1]),
(S:[PID3])]

(O

Actor Registry

— 3: Invite actors to fulfil roles

TwoBuyer
Instance

~ 4: Notify of success or failure

Success(
[(A, PID2),
(B, PID1),
(C, PID3)],

Success(
[(A, PID2),
(B, PID1),
(C, PID3)],

Ms)

TwoBuyer
Instance

OO

__1: Start conversation_instance
process

TwoBuyer
Instance

Spawn (TwoBuyer,
PID, A)

_ 2: Retrieve monitors and candidate _
actors

[(A: M),
(B: Mb))
S: Ms)]

Protocol Registry

(r

TwoBuyer

Instance

[(A: [PID1, PID2]),
(B:[PID1]),
(S:[PID3])]

(O

Actor Registry

— 3: Invite actors to fulfil roles

TwoBuyer
Instance

~ 4: Notify of success or failure

Success(
[(A, PID2),
(B, PID1),
(C, PID3)],

Success(
[(A, PID2),
(B, PID1),
(C, PID3)],

Ms)

TwoBuyer
Instance

OO

Thinking Aloud

e what patterns do we see?”

e contract/type checks/errors with
3rd-party libs/modules

e session types for epidemic broadcast
protocols and selective hearings:

|1] A. Aiken and B. Murphy, “Static type inference in a dynamically typed language,” Proc. 18th
ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang. - POPL ’91, pp. 279-290, 1991.

2] A. Aiken and E. L. Wimmers, “Type inclusion constraints and type inference,” Proc. Conf.
Funct. ..., pp. 31-41, 1993.

|3] Trevor Jim. 1996. What are principal typings and what are they good for?. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL
'96).

|4] A. Lindgren, “A prototype of a soft type system for erlang,” 1996.

|5] S. Marlow and P. Wadler, “A Practical Subtyping System for Erlang,” Int. Conf. Funct.
Program., 1997.

6] A. K. Wright and R. Cartwright, “A practical soft type system for scheme,” ACM Trans.
Program. Lang. Syst., vol. 19, no. 1, pp. 87-152, 1997.

7] S.-O. Nystrom, “A soft-typing system for Erlang,” Proc. Erlang Work., pp. 56-71, 2003.

8] J. Hughes, D. Sands, K. Ostrovsky, “Typing Erlang,” 2002.

9| K. Sagonas, “Experience from developing the Dialyzer: A static analysis tool detecting defects

in Erlang applications,” ... Eval. Softw. Defect Detect. Tools, pp. 1-5, 2005.

|10] T. Lindahl and K. Sagonas, “Practical type inference based on success typings,” Proc. 8th
ACM SIGPLAN Symp. Princ. Pract. Declar. Program. - PPDP ’06, p. 167, 2006.

|11] J. Armstrong, “A History of Erlang,” ... Conf. Hist. ..., 2007.

|12] M. Jimenez, T. Lindahl, and K. Sagonas, “A language for specifying type contracts in Erlang
and its interaction with success typings,” ... SIGPLAN Work. ERLANG ..., pp. 11-17, 2007.

|13] K. Sagonas and D. Luna, “Gradual typing of Erlang programs: A Wrangler experience,”
Proc. 7th ACM SIGPLAN Work. Erlang, pp. 73—82, 2008.

|14] M. Christakis and K. Sagonas, “Static Detection of Deadlocks in Erlang,” pp. 1-16, 2010.
|15] M. Christakis and K. Sagonas, “Detection of asynchronous message passing errors using
static analysis,” Proc. 13th Int. Conf. Pract. Asp. Declar. Lang., pp. 5-18, 2011.

|16] D. Mostrous and V. T. Vasconcelos, “Session typing for a featherweight Erlang,” Coord.
Model. Lang. 2011, pp. 95-109, 2011.

|17] K. Sagonas, J. Silva, and S. Tamarit, “Precise Explanation of Success Typing Errors,” Pepm,
pp. 3342, 2013.

|18] M. Christakis, A. Gotovos, and K. Sagonas, “Systematic testing for detecting concurrency
errors in Erlang programs,” Proc. - IEEE 6th Int. Conf. Softw. Testing, Verif. Validation, ICST
2013, pp. 154-163, 2013.

|19] K. Honda, R. Hu, R. Neykova, T. Chen, P. Deniélou, and N. Yoshida, “Structuring
Communication with Session Types,” Concurr. Objects Beyond Pap. Dedic. to Akinori Yonezawa
Occas. His 65th Birthd., pp. 1-23, 2014.

20| S. Fowler, “Monitoring Erlang / OTP Applications using Multiparty Session Types,” 2015.
21| E. Czaplicki, “Compilers as Assistants”., http://elm-lang.org /blog/compilers-as-assistants”

22| D. Spiewak, “What is Hindley-Milner? (and why is it cool?)”., http://www.codecommit.com /
blog/scala/what-is-hindley-milner-and-why-is-it-cool

|23| T. Lindahl and K. Sagonas, “TYPER: A Type Annotator of Erlang Code”

|24| B. Harper, “Dynamic Languages are Static Languages”., https://

existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages

http://elm-lang.org/blog/compilers-as-assistants
http://www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool
https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages

25| B. Pierce, “Types and Programming Languages”
26| Wikipedia, “Program Slicing”., https://en.wikipedia.org/wiki/Program _slicing

27| T. Lindahl and K. Sagonas, “Detecting software defects in telecom applications through
lightweight static analysis: A war story,” Program. Lang. Syst. Proc., vol. 3302, pp. 91-106, 2004.
28| https://github.com/erlang/otp /blob/maint /lib/dialyzer /doc/src/dialyzer.xml

29| J. Siek, et al, “Refined Criteria for Gradual Typing”

30| F. Hébert, “Learn You Some Erlang for Great Good!”

31] R. Cartwright and M. Fagan, “Soft typing,” ACM SIGPLAN Not., vol. 39, no. 4, p. 412,
2004.

|32] C. Meiklejohn and P. Van Roy, “Selective Hearing: An Approach to Distributed, Eventually
Consistent Edge Computation,” 2015.

https://en.wikipedia.org/wiki/Program_slicing
https://github.com/erlang/otp/blob/maint/lib/dialyzer/doc/src/dialyzer.xml

