'%‘I

BUILD A P2P DOCUMENT % g

ORIENTED DATABASE

BA R R E L https://barrel-db.org

,e enki

SENL R ST U378 SR v By 5P Sl P—

LECLU QT FwS

- Wil © geet Al
—_— Tesd es<
Cooc tre v ol

— | 6K
\(..hﬁo

Ve 9/ 7 \"".N rew
. - £ U J Wreee
b Coveby
3 ar T

3 Vie wNHR. DOQ D@;
) CReF & (25;8
A _::o o O A u:ng

sl -Veg,
..~ %M
s o

W

VISION
AND CONCEPT

DATA IS MOBILE > N obite

N =S o & -
s
%
< .
v \

"cloud" database

" local
database

N local database

moblle

,' enki

PEER TO PEER (P2P)

[|
=~ discover
‘;l A
share

H

9? enki

» Local first
» Put/Match the data next to you
» Query Locally

» Replicate a view of the data you need

’e enki

WHAI g
1S BARREL

” enki

» a document database

» document are JSON with attachments and links
» changes feed for document and indexes

» replication between any nodes in both way

» views (~ map)

» HTTP 1.1/2 API

WHAT IS BARREL

» DATA: not just blobs
» Replicated APPs

» Couchapps but extended and revisited

REPLICATED APPS

DECONSTRUCT

” enki

invalid data

- Document revision

- Block

- btree node

>

version

APPEND ONLY & MVCC

,e enki

» Create a new file to remove the fragmentation
» A race between copy and the addition of new data

» Require at least twice of the storage

THE COMPACTION ISSUE

’e enki

ID-Index Seqg-Index

ID 1 METADATA 1 SEQ 1 METADATA 1
ID 2 METADATA 2 SEQ 2 METADATA 2 T
ID 3 METADATA 3 SEQ 3 METADATA 3

DB file

Btree Btree
Node Node

Indexed document

,e enki

DOCUMENT STORAGE

» 2 indexes (btree): by sequence, by id
» 1 index for local documents without conflict handling

» A revision tree is stored in indexes pointed to the revisio
offset

» The revision is stored in the file separately

HOW ARE STORED DOCUMENTS

’e enki

» Reverse index (map)

» Index using a function

» Function in javascripts, erlang, ..

» Incremental index

» Retrieves changes (aka view changes)

» View are regrouped by groups (1 db file/group)

VIEWS

,e enki

Log-Index

DOCID View 1 KEY 1 SEQ 1 ADD
KEY 2 SEQ 2 DEL
View 2 KEY 1 SEQ 1 ADD

Key-Index

[KEY 1, DOCID]

[VALUE, DOCREV, SEQ]

[KEY 2, DOCID]

[del, DOCREV, SEQ]

[KEY 3, DOCID 2]

[VALUE, DOCREV, SEQ]

VIEW STORAGE

SEQ-Index

[SEQ 1, KEY]

[VALUE, DOCREV, SEQ]

[SEQ 2, KEY 2]

[del, DOCREV, SEQ]

[SEQ 3, KEY]3

[VALUE, DOCREV, SEQ]

E enki

REVISION TREE

1-abc

/

2-bed
i Q
Body of leaf node in Body of leaf node in
winning rev tree must be kept losing rev trees must be kept

’e enki

BUILT <M [>
IN ERLANG

” enki

» Write is slow

» Read should not being blocked by writes
» No shared memory

» No atomic integer trick

» Only actors and message passing

» Operations on a doc are atomic

CHALLENGES

\ha%;a)v . READER

v
update
> DB STATE

READ/WRITE OPERATIONS

» LRU to cache blocks
https://github.com/barrel-db/erlang-Iru

» 1 File process, Operations are limited
» DB users are linked to the database process
» Optional Write buffer to reduce the latency

» Optional wal

READ/WRITE OPERATIONS

» STORE SEGMENTS of data for compaction

» 10 is "relatively"” slow in erlang

» USE a “"native KV store” as a nif.

SPEEDUPS

change reader

send /collect\chang . . READER

READER

indexer
sha e

get changes ‘ View Group

” enki

INDEX OPERATIONS

» Credit Flow Based

» The View group keep the state

» View group is created on demande
» kept open until it has readers

» Indexer ask for updates

» Read functions (Map functions) are processed in //

INDEX OPERATIONS

’e enki

» Added 2 features:
» MOVE: move doc(s) to another node or database (like copy but with dele

» User hooks functions (run in background) using hooks:
https://github.com/barrel-db/hooks

» Partition on demand

» Decision depends on the application needs

NEW FUNCTIONS

change dispatcher
bdth/7/ .
—~ 0 -

DB./

\./-

CHANGES HANDLER

» Use the sequence index

» changes load balancing

» consumer subscribe on patterns (delete, update, ...)
» Create changes Load Balancer on demand

» Allows remote nodes to subscribe to a queue

» Based on primer (release on March 2016)

CHANGES EVENTS

» Use the sequence index

» changes load balancing

» consumer subscribe on patterns (delete, update, ...)
» Create changes Load Balancer on demand

» Allows remote nodes to subscribe to a queue

» Based on primer (release on March 2016)

CHANGES EVENTS

» inherited the HTTP api in mochiweb

» small changes to makes the server more resilient
» chatterbox

» wip in cowboy.

» yaws ?

HITP AP

» Over HTTP
» Replication is the core

» Each nodes can replicate each others
» PUSH/PULL

» Chained replication

P2P

» Based ont the change feed

» fetch the revisions and their attachments
not present on the node

» continuous or not
» try to collect multiple docs at once

» use hackney:
http://github.com/benoitc/hackney

» Use a Flow-based pattern instead of a classic pool

REPLICATION

http://github.com/benoitc/hackney

replication

worker
push c\
«

fetch docs e B
et changes . .
DB SOURCE ‘ 9 9 ‘ replication proxy

REPLICATION OPERATIONS Y€ enki

DB TARGET

nqtify
changes

» Replication state is stored a least on one node

» checkpoints

» get the revisions not actually stored on the nodes (“_rev_diffs”
» the replication proxy maintains routes

» build replication chains, by replicating status

REPLICATION
’eenki

Barrel

HTTPS://BARREL-DB.ORG

Enki Multimedia

HTTP://ENKIM.EU

https://barrel-db.org
http://enkim.eu

