
BARREL
BUILD A P2P DOCUMENT 
ORIENTED DATABASE

https://barrel-db.org

Erlang Factory San Francisco 2016









VISION 
AND CONCEPT



local databasemobile

sensor

"cloud" database

local 
database

mobile
DATA IS MOBILE



share

discover

replicate

PEER TO PEER (P2P)



▸ Local first 

▸ Put/Match the data next to you 

▸ Query Locally 

▸ Replicate a view of the data you need



WHAT 
IS BARREL



WHAT IS BARREL

▸ a document database  

▸ document are JSON  with attachments and links 

▸ changes feed for document and indexes 

▸ replication between any nodes in both way 

▸ views (~ map) 

▸ HTTP 1.1/2 API 



▸ DATA: not just blobs 

▸ Replicated APPs  

▸ Couchapps  but extended and revisited

REPLICATED APPS



DECONSTRUCT



APPEND ONLY & MVCC

Doc1

Doc2

Doc3

Doc4

Doc5

Doc6

Doc7

Btree 
Node

Btree 
Node

Document revision

Block

btree node

invalid data

version



▸ Create a new file to remove the fragmentation 

▸ A race between copy and the addition of new data 

▸ Require at least twice of the storage

THE COMPACTION ISSUE



DOCUMENT STORAGE

ID 1 METADATA 1
ID 2 METADATA 2
ID 3 METADATA 3

ID-Index
SEQ 1 METADATA 1
SEQ 2 METADATA 2
SEQ 3 METADATA 3

Seq-Index

Btree 
Node

Btree 
NodeDoc

Indexed document

DB file



▸ 2 indexes (btree): by sequence, by id 

▸ 1 index for local documents without conflict handling 

▸ A revision tree is stored in indexes pointed to the revision 
offset 

▸ The revision is stored in the file separately

HOW ARE STORED DOCUMENTS



▸ Reverse index (map) 

▸ Index using a function 

▸ Function in javascripts, erlang, .. 

▸ Incremental index 

▸ Retrieves changes (aka view changes) 

▸ View are regrouped by groups (1 db file/group)

VIEWS



VIEW STORAGE

DOCID View 1 KEY 1 SEQ 1 ADD

KEY 2 SEQ 2 DEL

View 2 KEY 1 SEQ 1 ADD

Log-Index

[KEY 1, DOCID] [VALUE, DOCREV, SEQ]

[KEY 2, DOCID] [del, DOCREV, SEQ]

[KEY 3, DOCID 2] [VALUE, DOCREV, SEQ]

Key-Index
[SEQ 1, KEY] [VALUE, DOCREV, SEQ]

[SEQ 2, KEY 2] [del, DOCREV, SEQ]

[SEQ 3, KEY]3 [VALUE, DOCREV, SEQ]

SEQ-Index

view



REVISION TREE



BUILT 
IN ERLANG

/><



▸ Write is slow  

▸ Read should not being blocked by writes 

▸ No shared memory 

▸ No atomic integer trick 

▸ Only actors and message passing 

▸ Operations on a doc are atomic

CHALLENGES



READ/WRITE OPERATIONS

DB STATE

READER

READER

writer

writer

update

share state



▸ LRU to cache blocks  
https://github.com/barrel-db/erlang-lru 

▸ 1 File process, Operations are limited 

▸ DB users are linked to the database process 

▸ Optional Write buffer to reduce the latency 

▸ Optional wal 

READ/WRITE OPERATIONS



▸ STORE SEGMENTS of data for compaction 

▸ IO is "relatively" slow in erlang 

▸ USE a “native KV store” as a nif.

SPEEDUPS



INDEX OPERATIONS

View Group

READER

READER

change reader

indexer
update

share state

send /collect changes

DB

get changes



▸ Credit Flow Based 

▸ The View group keep the state 

▸ View group is created on demande 

▸ kept open until it has readers 

▸ Indexer ask for updates 

▸ Read functions (Map functions) are processed in //

INDEX OPERATIONS



▸ Added 2 features: 

▸ MOVE: move doc(s) to another node or database (like copy but with delete) 

▸ User hooks functions (run in background) using hooks: 
https://github.com/barrel-db/hooks 

▸ Partition on demand 

▸ Decision depends on the application needs

NEW FUNCTIONS



CHANGES HANDLER

subscriber

change dispatcher

broadcast changes

DB



▸ Use the sequence index 

▸ changes load balancing 

▸ consumer subscribe on patterns (delete, update, …) 

▸ Create changes Load Balancer on demand 

▸ Allows remote nodes to subscribe to a queue 

▸ Based on primer (release on March 2016)

CHANGES EVENTS



▸ Use the sequence index 

▸ changes load balancing 

▸ consumer subscribe on patterns (delete, update, …) 

▸ Create changes Load Balancer on demand 

▸ Allows remote nodes to subscribe to a queue 

▸ Based on primer (release on March 2016)

CHANGES EVENTS



▸ inherited the HTTP api in mochiweb 

▸ small changes to makes the server more resilient 

▸ chatterbox  

▸ wip in cowboy.  

▸ yaws ?

HTTP API



P2P



▸ Over HTTP 

▸ Replication is the core 

▸  Each nodes can replicate each others 

▸ PUSH/PULL 

▸ Chained replication

P2P



▸ Based ont the change feed 

▸ fetch the revisions and their attachments 
not present on the node 

▸ continuous or not 

▸ try to collect multiple docs at once 

▸ use hackney: 
http://github.com/benoitc/hackney 

▸ Use a Flow-based pattern instead of a classic pool

REPLICATION

http://github.com/benoitc/hackney


REPLICATION OPERATIONS

replication  
worker 

replication proxy

fetch docs

DB SOURCE get changes

DB TARGET

notify 
changes

push docs



▸ Replication state is stored a least on one node 

▸ checkpoints 

▸ get the revisions not actually stored on the nodes (“_rev_diffs”) 

▸ the replication proxy maintains routes 

▸ build replication chains, by replicating status

REPLICATION





HTTPS://BARREL-DB.ORG
Barrel

HTTP://ENKIM.EU
Enki Multimedia

https://barrel-db.org
http://enkim.eu

