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The dysfunctional Web 
on the server

• There is no more free lunch 

• The world is moving from mostly stateless 
connections to increasingly stateful ones 

• This is at odds with most languages’ concurrency 
models 

• OO solutions are becoming increasingly more 
complex to handle the demands of the modern 
web 



• Fragile tooling 

• Competing async models 

• Framework churn and framework fatigue as the 
community seeks ideal architectures

The dysfunctional Web 
on the client
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2M channel clients on one server



45 Rackspace 4GB 2vCPU tsung fleet

1 Rackspace 40core 2.8Ghz Xeon 128GB Phoenix server



83 of 128GB used



Broadcasting to 2M subscribers



Optimizations
• 30k → 60k subscribers

• 14 additions and 69 deletions 

• 60k → 330k subscribers

•  5 additions and 38 deletions 

• 330k → 450k subscribers (+10x arrival rate)

• 1 addition and 1 deletion



observer







-  ^local = :ets.new(local, [:bag, :named_table, :public, 
+ ^local = :ets.new(local, [:duplicate_bag, :named_table, :public,

10x increase in arrival rate



Sharding Subscriptions
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Sharding Subscriptions
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defp pid_to_shard(pid, shard_size) do
  pid
  |> pid_id()
  |> rem(shard_size)
end
defp pid_id(pid) do
  bin = :erlang.term_to_binary(pid)
  pre = (byte_size(binary) - 9) * 8
  <<_::size(pre), id::size(32), _::size(40)>> = bin
  id
end

ETS0 Local0

ETS1 Local1

ETS2 Local2

#PID<0.57.0> 
rem(57, 3) => 0



Phoenix.Presence



A look at the problem 
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Solution?: 
Presence server that monitors and broadcasts joins/

leaves



def join("lobby", _, socket) do
  Presence.add(self(), socket.assigns.user)
  {:ok, %{users: Presence.list(), socket}
end

defmodule Presence do
  def handle_call(:list, _, users) do
    {:reply, users, users)
  end
  def handle_call({:add, pid, user}, _, users) do
    ref = Process.monitor(pid)
    broadcast("lobby", "join", user)
    {:reply, :ok, Map.put(users, ref, user)}
  end
  def handle_info({:DOWN, ref, :process,_,_}, users) do
    broadcast("lobby", "leave", Map.get(users, ref))
    {:noreply, Map.delete(users, ref)}
  end
end
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A look at the problem 
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Solution?: 
Presence backed by shared database!



A look at the problem 
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The Problem
• Local-node concerns 

• must account for unique presences for same user 

• Multi-node concerns 

• must handle node-down events and clean up 
local state for presences belonging to downed 
node 

• must replicate data across cluster



The Solution

• Ideal Architecture  

• no single source of truth 

• no single point of failure 

• CRDT (Conflict-free Replicated Data Type) 

• Heartbeat/Gossip protocol



CRDT 
conflict-free, replicated data type

• Strong eventual consistency 

• Replicate presence join and leave events across 
the cluster without merge conflicts 

• Conflicts are mathematically impossible 

• Supports replication without remote synchronization



Heartbeat Protocol
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Vector Clocks

node1
n2: 1→1, %{n3: 1, n4: 2} 
n3: 1→2, %{n2: 2, n4: 2} 
n4: 2→3, %{n2: 2, n3: 2}

has updates
has updates

only n4 is selected to request updates since n3 is 
contained in its future 

Catching up on missed deltas



defmodule RoomChannel do
  def join("rooms:" <> room_id, _, socket) do
    send self(), :after_join
    {:ok, socket}
  end

  def handle_info(:after_join, sock) do
    id = sock.assigns.user_id
    Presence.track(sock, id,%{status: "avail"})
    push sock, "presences", Presence.list(sock)
    {:noreply, sock}
  end
end

Server API



Client API

import {Socket, Presence} from "phoenix"
let socket = new Socket("/socket")
let room = socket.channel("rooms:" + id)
let presences = {}

room.on("presences", state => {
  Presence.syncState(presences, state)
})
room.on("presence_diff", diff => {
  Presence.syncDiff(presences, diff)
})
console.log("users", Presence.list(presences)})



Demo



Making The Web Functional

• Good platforms drive you toward optimal solutions 

• You can trust that following the principles laid out 
produces fast, maintainable programs 

• Fast code does not have to equal dense code 

• Productive code does not have to equal slow code 

• Good platforms let you to focus on what matters – 
your application



“writing great code should be easy… now it is” 
– elm-lang.org 


