
Making the Web Functional

@chris_mccord / @czaplic

The dysfunctional Web
on the server

• There is no more free lunch

• The world is moving from mostly stateless
connections to increasingly stateful ones

• This is at odds with most languages’ concurrency
models

• OO solutions are becoming increasingly more
complex to handle the demands of the modern
web

• Fragile tooling

• Competing async models

• Framework churn and framework fatigue as the
community seeks ideal architectures

The dysfunctional Web
on the client

www.dockyard.com

http://www.dockyard.com

2M channel clients on one server

45 Rackspace 4GB 2vCPU tsung fleet

1 Rackspace 40core 2.8Ghz Xeon 128GB Phoenix server

83 of 128GB used

Broadcasting to 2M subscribers

Optimizations
• 30k → 60k subscribers

• 14 additions and 69 deletions

• 60k → 330k subscribers

• 5 additions and 38 deletions

• 330k → 450k subscribers (+10x arrival rate)

• 1 addition and 1 deletion

observer

- ^local = :ets.new(local, [:bag, :named_table, :public,
+ ^local = :ets.new(local, [:duplicate_bag, :named_table, :public,

10x increase in arrival rate

Sharding Subscriptions

ETS

Pub.Local

PG2

node1 node2

ETS

Pub.Local

PG2

Sharding Subscriptions

ETS0 Local0

PG2

node1

PG2

ETS1 Local1

ETS2 Local2

node2

ETS0 Local0

ETS1 Local1

ETS2 Local2

defp pid_to_shard(pid, shard_size) do
 pid
 |> pid_id()
 |> rem(shard_size)
end
defp pid_id(pid) do
 bin = :erlang.term_to_binary(pid)
 pre = (byte_size(binary) - 9) * 8
 <<_::size(pre), id::size(32), _::size(40)>> = bin
 id
end

ETS0 Local0

ETS1 Local1

ETS2 Local2

#PID<0.57.0>
rem(57, 3) => 0

Phoenix.Presence

A look at the problem

user1
Online Users
• user1
• user2

user2

Solution?:
Presence server that monitors and broadcasts joins/

leaves

def join("lobby", _, socket) do
 Presence.add(self(), socket.assigns.user)
 {:ok, %{users: Presence.list(), socket}
end

defmodule Presence do
 def handle_call(:list, _, users) do
 {:reply, users, users)
 end
 def handle_call({:add, pid, user}, _, users) do
 ref = Process.monitor(pid)
 broadcast("lobby", "join", user)
 {:reply, :ok, Map.put(users, ref, user)}
 end
 def handle_info({:DOWN, ref, :process,_,_}, users) do
 broadcast("lobby", "leave", Map.get(users, ref))
 {:noreply, Map.delete(users, ref)}
 end
end

user1

Online Users
• user1
• user2

user2

user1
“join”, user1

“join”, user1
“join”, user1

“join”, user2

user1

A look at the problem

“leave”, user1

Online Users
• user2

❌

A look at the problem

user1 • user1

user2

node1
node2

Presence.list()

• user2
Presence.list()❌

Solution?:
Presence backed by shared database!

A look at the problem

user1 • user1
• user2

user2

node1

Presence.list()

• user1
• user2

Presence.list()

node2🔥

(orphaned)

The Problem
• Local-node concerns

• must account for unique presences for same user

• Multi-node concerns

• must handle node-down events and clean up
local state for presences belonging to downed
node

• must replicate data across cluster

The Solution

• Ideal Architecture

• no single source of truth

• no single point of failure

• CRDT (Conflict-free Replicated Data Type)

• Heartbeat/Gossip protocol

CRDT
conflict-free, replicated data type

• Strong eventual consistency

• Replicate presence join and leave events across
the cluster without merge conflicts

• Conflicts are mathematically impossible

• Supports replication without remote synchronization

Heartbeat Protocol

node1 node2
:heartbeat, %CRDT.Delta{}

:heartbeat, %CRDT.Delta{}

❌

❌

❌

nodedown
node2

Vector Clocks

node1
n2: 1→1, %{n3: 1, n4: 2}
n3: 1→2, %{n2: 2, n4: 2}
n4: 2→3, %{n2: 2, n3: 2}

has updates
has updates

only n4 is selected to request updates since n3 is
contained in its future

Catching up on missed deltas

defmodule RoomChannel do
 def join("rooms:" <> room_id, _, socket) do
 send self(), :after_join
 {:ok, socket}
 end

 def handle_info(:after_join, sock) do
 id = sock.assigns.user_id
 Presence.track(sock, id,%{status: "avail"})
 push sock, "presences", Presence.list(sock)
 {:noreply, sock}
 end
end

Server API

Client API

import {Socket, Presence} from "phoenix"
let socket = new Socket("/socket")
let room = socket.channel("rooms:" + id)
let presences = {}

room.on("presences", state => {
 Presence.syncState(presences, state)
})
room.on("presence_diff", diff => {
 Presence.syncDiff(presences, diff)
})
console.log("users", Presence.list(presences)})

Demo

Making The Web Functional

• Good platforms drive you toward optimal solutions

• You can trust that following the principles laid out
produces fast, maintainable programs

• Fast code does not have to equal dense code

• Productive code does not have to equal slow code

• Good platforms let you to focus on what matters –
your application

“writing great code should be easy… now it is”
– elm-lang.org

