CRDTs

Christopher Meiklejohn
Université catholique de Louvain, Belgium
Annette Bieniusa
University of Kaiserslautern, Germany

C
& 2

ROVIO
alls
SCALITY ‘@
% ri 4 k TOoMTOM
Clapjoy

TRIFORK.

L) . Ahink software
SOUNDCLOUD

'\

a k k a PF%D‘JECITV

Outline

What is the problem with concurrent modifications”?
Contlict-resolution strategies
Taking data-type semantics into account

OR-Sets, OR-Dictionaries and other CRDTs

Replicated data

e Share data = Replicate at many locations

= Performance: local reads

= Availability: iImmune from network failure
= Fault-tolerance: replicate computation
= Scalability: load balancing

 Updates are problematic
= Push to all replicas
= Conflicts: Consistency?
= CAP impossibility

% Handads-on

$ docker run -i -t cmeiklejohn/crdt-tutorial

alice@127.0.0.1> tutorial:connect()

Concurrency anomalies

* Two users update a shared integer (register), each user
has a local copy which gets moditied, then the changes
get pushed to the other user

set(1) SYNC
Alice 1

set(2) sync

= Divergent replica state

il Hands-on

Alice: tutorial:mutate(ivar, state_ivar, {set, 1}).
Bob: tutorial :mutate(ivar, state_ivar, {set, 2}).

Alice: tutorial:sync()
Bob: tutorial:sync()

Alice: tutorial:query(ivar, state_ivar).
Bob: tutorial :query(ivar, state_ivar).

Falled convergence

* They try to fix by taking a new register and

deciding ahead of time about the value (out-of-
band)

* Or just allow one writer

Why not strong consistency”?

* |dea: Use a leader election algorithm to coordinate
and order the operations

» Not feasible in highly-concurrent, large-scale
replication scenario

- (Geo-replication
- Mobile computing
 We will not trade availability!

e Fault-tolerance is essential

User-triggered conflict
resolution

* Other option: Multi-Value-Register

 FHexible, but cumbersome

set(1) sync
Alice _—

set(2) sync

 No guarantee of convergence if users do not use the
same conflict resolution policy

il Hands-on

————

Alice: tutorial:mutate(mvregister, state_mvregister,
{set, 1473063813940041, 1}).

Bob: tutorial :mutate(mvregister, state_mvregister,
{set, 1473063815940041, 2}).

Alice: tutorial:sync()
Bob: tutorial:sync()

Alice: tutorial:query(mvregister, state_mvregister).
Bob: tutorial :query(mvregister, state_mvregister).

 What happens if both users set the same value?

« How can we fix the inconsistency”

Systematic contflict resolution

e [ast-writer-wins strategy:
- Order all updates by some (logical/physical) time
- Only the latest update will succeed

Alice: tutorial:mutate(lwwregister, state_lwwregister,
{set, 1473063813940641, 2}).
Bob: -

tutorial :mutate(lwwregister, state_lwwregister,
{set, 14730638159400641, 2}).

Alice: tutorial:sync()
Bob: tutorial:sync(Q)

Alice: tutorial:query(lwwregister, state_lwwregister).
Bob: tutorial:query(lwwregister, state_lwwregister).

| ost updates

* Both users increment the shared integer by 1, starting
from the same value

* Lost update, but it is not observable by the users as
both think their update was successtul

e [dea:

- Use UIDs to distinguish operations
- Replay all operations

- Requirement: Commutativity

Data-type specific conflict
resolution

Need an abstract data type definition
Example: PNCounter

Operations: increment, decrement
Specification:

* |nitial value: O

* |[ncrement the counter by 1

 Decrement the counter by 1

Alice:
Bob:

Alice:
Bob:

Alice:
Bob:

tutorial
tutorial

tutorial
tutorial

tutorial
tutorial

Hanas-on

:mutate(pncounter, state_pncounter, increment).
:mutate(pncounter, state_pncounter, increment).

:sync()
:sync()

:query(pncounter, state_pncounter).
:query(pncounter, state_pncounter).

An Erlang library for CRDTs

lasp-lang / types ®OwWwatch~ 1 %Star 21 YFork 2

<> Code Issues 0 Pull requests 0 Wiki Pulse Graphs

Prototype implementation of Conflict-free Replicated Data Types (CRDTSs) in Erlang. https://lasp-lang.org

) 291 commits ¥ 3 branches v 0 releases 22 5 contributors

https://github.com/lasp-lang/types

https://github.com/lasp-lang/types

Overview: Counters

% Grow-only counter
tutorial :mutate(gcounter, state_gcounter, increment).

% Pos-Neg counter
tutorial :mutate(pncounter, state_pncounter, increment).
tutorial :mutate(pncounter, state_pncounter, decrement).

Overview: Registers

% Last-Writer-Wins register
tutorial :mutate(lwwregister, state_lwwregister,
{set, Time, Value}).

% Multi-Value register
tutorial :mutate(mvregister, state_mvregister,
{set, Time, Value}).

Correctness requirements

 \What do we need to guarantee”

* [Pure op-based]| Causal delivery of updates

e [State-based] Anti-entropy

* [Causal-based] Causal per-object anti-entropy

19

Overview: CRDT Sets

%% Observed-Remove Set
tutorial:mutate(orset, state_orset, {add, Value}).
tutorial :mutate(orset, state_orset, {rmv, Value}).

%% Add-Wins Causal Set
tutorial :mutate(awset, state_awset, {add, Value}).
tutorial :mutate(awset, state_awset, {rmv, Value}).

CRDT design concept

Same APl as sequential abstract data type with
concurrency semantics

Commutativity => Concurrent = Sequential

Otherwise, requires arbitration
* Close to sequential version
 Don't lose updates
* Result doesn't depend on order received
o Stable preconditions

21

Extending the Set seaq.
Spec.

* Sequential specification of Set:
L add(e)
° rmv(e)

 Commutative (e = f).

® [truef add(e) add(e) {ee S}

® [truef rmv(e) rmv(e) (e ¢ S/

o {true} add(e) add(f) {e,fe S}

o (truef rmv(e) rmv(f) {e, f& S}

® (truef add(e) rmv(f) {ee S, fe S}

 Ambiguous:

® /true) add(e) || rmv(e) {7777}

add(e

add(e) || rmv(e)

¢ lnearisable?

e |ast writer wins?

e error state?

e add wins?

e remove wins?

e) || rem(e)

Other set designs

e Grow-only set + union merge
= No remove
o 2P-Set: [Wuu & Bernstein PODC 1984]
= Add + tombstones
= Add/remove once
= \/iolates sequential spec
e c-set: [Sovran et al.,, SOSP 2011]

= Add/remove counter

= \liolates sequential spec

Strong eventual consistency
= Sequential Consistency

* Consider Set-like object S such that:
add(e)

remove(e)

add(e) || remove(e)

e Satisfies SEC conditions
add(e); remove(e)

add(e'); remove(e)

* Not sequentially consistent

Concurrent
+ sequential permutation

e Multivalue Register (Dynamo):

X::1 —}X:=2

X=2 —=X:=1

Concurrent
+ sequential permutation

* Multivalue Register (Dynamo):

® X:=1—}X:=2
® X::2 —>X:=1
® X=71 || x=2

 Can't be explained sequentially

Taxonomy of CRDTs

Operation-based vs. state-based
Delta CRDTs

Bounded CRDTs

Optimized CRDTs (Garbage collection)

CRDT types in Literature

Register Counter
e |ast-Writer Wins e Unlimited
o Multi-Value e Restricted >0
Set Graph
e Grow-Only e Directed
o OP * Monotonic DAG
e Observed-Remove Edit graph
Map Seqguence
~lags (boolean)
Pairs

And where Is the catch”

e Meta-data overhead

e Version vectors usually used to identity concurrent
modifications

 Grows as O(N), where N is the number of
distinguishable moditying entities -> Churn!

* Monotonically growing state with state-based CRDTs
(tombstones ...) -> Garbage collection necessary

 LWW with physical clocks -> clock skew

Outlook: Composability

e Nested CRDTs

 Maps, pairs, sequences of (keys to) CRDT
objects

* Recursive, structural merge

 Examples: Riak DT Maps, JSON CRDT

* Transactional CRDT updates (-> Antidote)

