
Building a Graphical
IDE in Elm

for a Distributed PLC Language Compiling to BEAM

by @doppioslash

09/09/2016 - Erlang User Conference - Stockholm

Hi, I’m

Game
Developer

@doppioslash
www.lambdacat.com

Claudia Doppioslash

Functional
Programmer &

http://www.twitter.com/doppioslash
http://www.lambdacat.com

Peer Stritzinger GmbH

www.stritzinger.com

Functional and Failure Tolerant
Programming for Embedded,

Industrial Control and Automotive

http://www.stritzinger.com

Why are you here?

“I need to get some frontend code done,
and I hate Javascript”

“I was promised a embedded Erlang demo”

Interested in Haskell-like languages

What are you getting
This is a WIP-mortem:

- why we made the choices we made
- what went right/wrong
- enough Elm to understand what’s going on
- a demo of embedded Erlang + Elm client

Not an Elm guide, also not latest Elm version.

Our Project

Event flows with Data

Voter

Reset

Vote

Ready

Voted

State

A

B

C

Distributed PLC
with IEC61499

Voter

Reset

Vote

Ready

Voted

State

A

B

C

“A programmable logic controller, PLC, or programmable
controller is a digital computer used for automation"

Our Project
Visual IDE for PLC language IEC61499

Inspired by Bret Victor’s “Inventing on Principle” talk:

Our Project

Requirements

Many platforms to support
All PC OSs & iPad Pro

Decent performance
Needs to be interactive
~30fps should be fine

Frontend Tech Choice

Web Technologies because cross-platform

Hence: Javascript, CSS, Svg

Wait a minute, Javascript?

…let’s not.

Possible Choices, Then

- Clojurescript
- Elm
- CoffeScript
- Typescript

Ready at the time:

Possible Choices, Now

- Purescript
- Fable
- Reason
- Clojurescript
- Bucklescript
- Elm
- …

Ready now:

Why Elm?
Functional Reactive Programming

(it’s gone now though)

Good error messages
(so good everyone is imitating them)

No runtime exceptions
Some concept somewhat similar to Erlang

(e.g. Mailboxes)

What is Elm?
Pure Functional
Strongly Typed

Eagerly evaluated
Compiles to Javascript

Functional Reactive Programming (< 0.17)
Haskell-like syntax

Very small
Optimised for learning curve (>0.16)

Similar to Haskell but no advanced types
Elm package manager enforces semantic versioning

Elm Pros compared to JS

If it compiles, it works (90% of the time)
Confident refactoring

Clean
Much fewer LOC

The famous great error messages

The famous Elm errors
They are good, because:

- contextual
- correct common errors
- carefully tracked on a git repo

But

The famous Elm errors

you can call something wrong
 or define something wrong

and it defaults on wrong definition
while it would be more useful to find incorrect use

Elm Pros compared to JS
Elm actually makes sense (seen the ‘Wat’ talk?)

Elm Cons compared to JS

Javascript interop inflexible
(less in 0.17)

new language, still 0.x

…so, not that much.

0.16? 0.17?
The jump from 0.16 and 0.17 in Elm

FRP
mailboxes
addresses

signals
foldp

0.16 0.17

Confusing name overlap
with Erlang

mailboxes are sent signals
through addresses

signals are streams of values
foldp accumulates the state

ports are “doors” into JS, of a certain type-shape

BROWSER

Our Project

PLC IDE ELMRANG

PLC BOARD

BEAM

bullet.js

PLC Program cowboy + bullet

ports

web sockets

Demo

PLC IDE Structure

Elmrang

Decoder

Renderer

Encoder

browser

plc device

ui interaction

What is StartApp?
Implementation of The Elm Architecture for 0.16

In 0.17 it is the language

Action Model ViewUpdate

Beware: this is different in 0.17

What is StartApp?
Action

type Action
= Increment
| Decrement

Just a Union Type (aka ADT, etc)

What is StartApp?
Model

type alias Model = Int

A type alias

What is StartApp?
Update

update : Action -> Model -> Model
update action model =
 case action of
 Increment -> model + 1
 Decrement -> model - 1

Returns the new model state

What is StartApp?
View

view : Address -> Model -> Html
view address model =
 p [] [text model]

Returns html

PLC IDE Structure
Four StartApp connected by Mailboxes

Wired into a parent StartApp, so nested StartApps
As in the structure invented by foxdonut

Easy to expand, add components
But no one ported it to 0.17 (may be impossible)

Elmrang can be a component using this structure

PLC IDE Structure

Elmrang

Decoder

Renderer

Encoder

browser

plc device

ui interaction

Why are we still on 0.16?

We use FRP heavily

Porting code might not be cost effective

Frustrated with lack of communication
(e.g. no deprecation warnings)

Waiting for Elm evolution to stabilise

Elmrang

is a websocket library mostly in Elm
it wraps the bullet library (for cowboy) using Elm ports

includes javascript code, so elm-package won’t accept it
we were meant to open source it

BUT
it relies on our app’s structure
0.17 has got socket anyways

so, ¯_(ツ)_/¯

(casualty of the FRP wars)

Why Elmrang?

no working websockets in Elm

wanted to use only ports,
not javascript wrapping

Once upon a time…

Production Problems

How to include an Elm project into an Erlang app?

How to organise subcomponents in a big Elm app?

How to store deps not on elm-package?

The file structure
Every component has:

component/Action.elm
component/Model.elm
component/View.elm
component/Update.elm
component/Feature.elm

Wired in in App.elm and fed to Main.elm

Non elm-package deps

- fetch it from repo
- store it in a subdir of the erlang project
- move only the elm files to a subdir of the elm project
- not under elm-stuff
- include the subdir in elm-package.json

Mixed Elm/Erlang Project

- /elm subdir in Erlang project
- compiler Elm files to /priv
- add the .js to your html file

Rendering

Choices we had:

- WebGL (2d rendering engine)
- SVG (w or w/o CSS layout and animations)
- Html (not ideal)

Rendering
We use Svg with CSS

CSS styles are in separate CSS files

We have an Svg & CSS expert on call

We try to do as much as we can with CSS

Animation in Elm can get complicated

Rendering

elm-html and elm-svg have great syntax:

Based on virtualdom = fast

div [class “somecssclass”]
 [p [] [text “a very well written paragraph”]
 , p [] [text “and another one”]
]

Several words to the wise
Be aware of what Elm is good for.

An Elm program has to fit the Elm Architecture
(which is good if it does fits, less if it doesn't)

Native modules

There is no path to get a library that wraps a
 javascript library on elm-package (e.g. elm-d3)

Several words to the wise

Elm is still experimental

Elm is still subject to big changes, expect to have
to rewrite some of your code with a new version.

Elm lacks a roadmap
There are short beta previews, and you can keep up by

looking at the changes in the compiler.
Recently Evan started doing semi-regular updates of what

he’s up to in the mailing list

What next?
We're going to skip 0.17

Maybe come back when Elm is nearer to 1.0

Meanwhile taking Purescript for a spin
and Clojurescript is on the list, too

What is Purescript?
Pure Functional
Strongly Typed

Eagerly evaluated
Compiles to Javascript

Haskell-like syntax (with all the squiggles)
Generates readable Javascript, has no runtime

Advanced Types
Open community, a bit of a roadmap

Why Purescript next?
The advantages of types in Elm were great

Elm stops at typeclasses, but the ceiling is much higher

Pragmatic reasons, it works, it's possible to implement Elm
in it, but not the other way around

Small, open community, communication still works

Fun!

tl;dr
Elm works fine with Erlang

If Elm compiles, it works (mostly)
boilerplate can get annoying

never expect fancy types
Haskell syntax (with less squiggles)
unexpected removal of FRP was :/

www.grisp.org

Win One of 10 Boards by
subscribing to the Newsletter

until September 15th

http://www.grisp.org

Questions?

