

Barking Mad With DalmatinerDB

https://dalmatiner.io

Once upon a time...

End of 2013

Õ

0

Startup

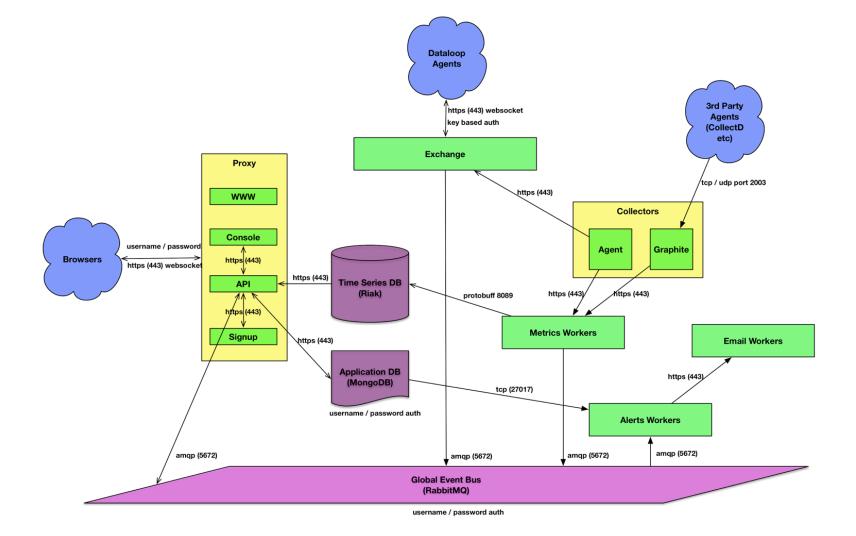
Happiness

What is Dataloop?

Performance

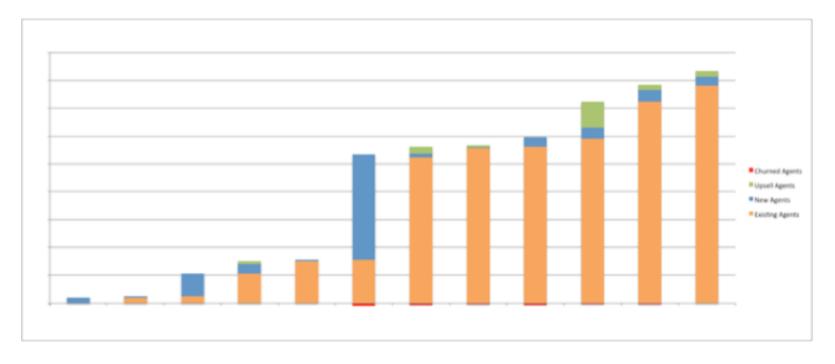
Datalcop.IO

**			
0	Nulses,	and Alaems	-
а.		Surley Ratter	A = = A
2	120		
-	0	station adding previous parts had a second well only a parts for state of a state of a state.	2.8
	•	addit adding isgi tit ir inge fan Linais	1.1
2	0	and and an entry of the part of the part of the second second second second second	1.1
9	0	state of the state	1.1
0	0	and and a second se	1.1
	0	skill skilling het besetting alle menge allege bling bling bling besetting and the second second second second	1.0
	0	and an energy and the second second second second second	1.0
	•		
	100		
	0	and a start's defait bibling, equilibly out, defait datagets of applicant's many. Additions and	-2.35

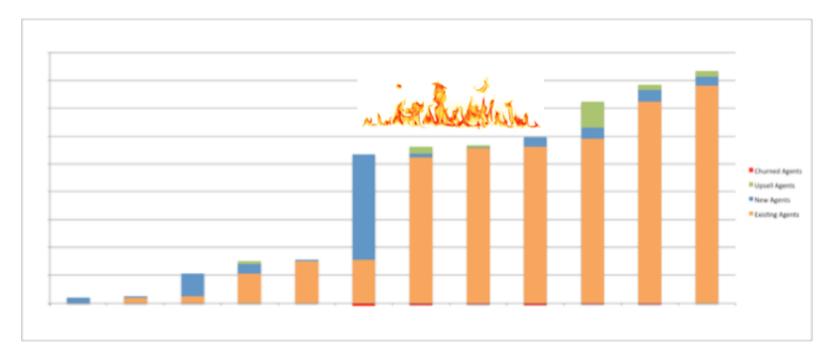

Alerts

é.,						😔
	Dependence During	e .				
	. 4	154	112	60	41	0
	-					4.2.4
	() polation	· · · ·	6 ()	0.000		6- C-
	** ** **		1.1	14 14 14 I		1.1
	0 -		80 (B.C.)	0		84 (B.4)
	TA TA TA			10 m 10 m 10 m	_	1.

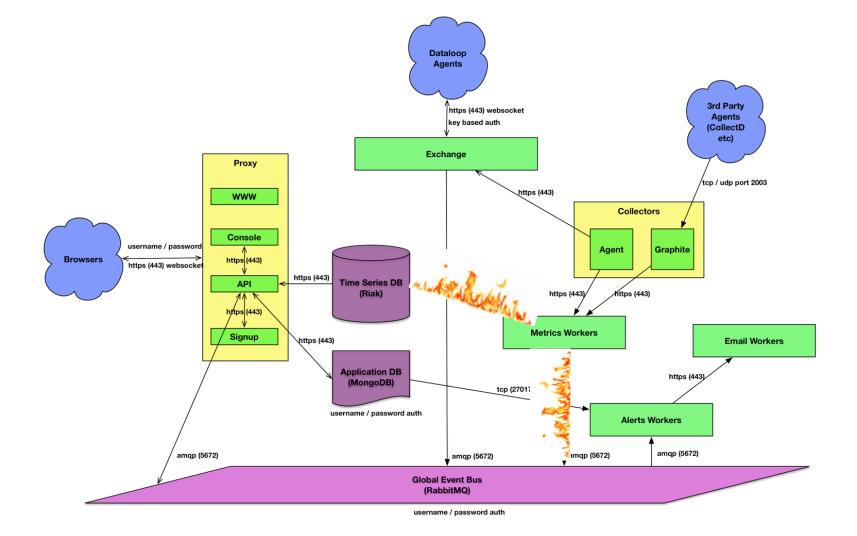
Enterprise Stuff



Dev Env



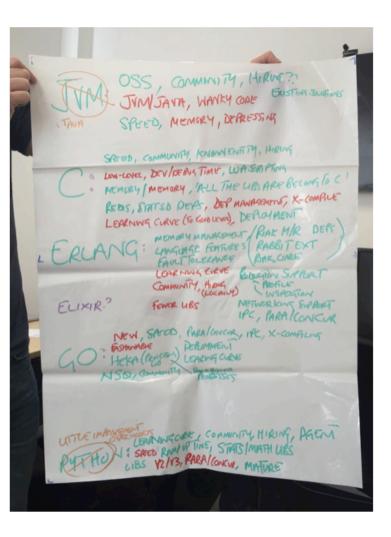
Dataloop Agents by Month



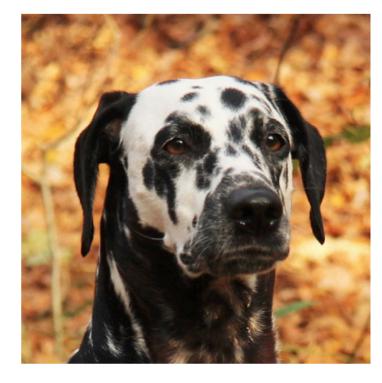
2015

Dataloop Agents by Month

2015

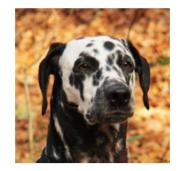


metric worker


rollup worker

- NodeJS metrics workers not scaling
- Memory management was an issue
- Needed big caches to reduce database load
- GC cycles too long
- 8 x single processes on an 8 core server

- Decided on Erlang
- Memory management
- Fault tolerance
- Good libraries for Rabbit and Riak
- · Live code tracing


- Approximately 6 weeks from no Erlang experience to working version
- No more crashes
- Reduced servers needed from 16 to 8

- Open Source Time-Series DB
- Written in Erlang
- Based on Riak-Core and uses ZFS
- Optimised for write throughput
- Needed for developer analytics features
- <u>https://dalmatiner.io/</u>

- Worked with Erlang solutions
- Cross trained team (Dave and Tomasz)
- · Removed the Redis
- Reduced servers needed from 8 to 2



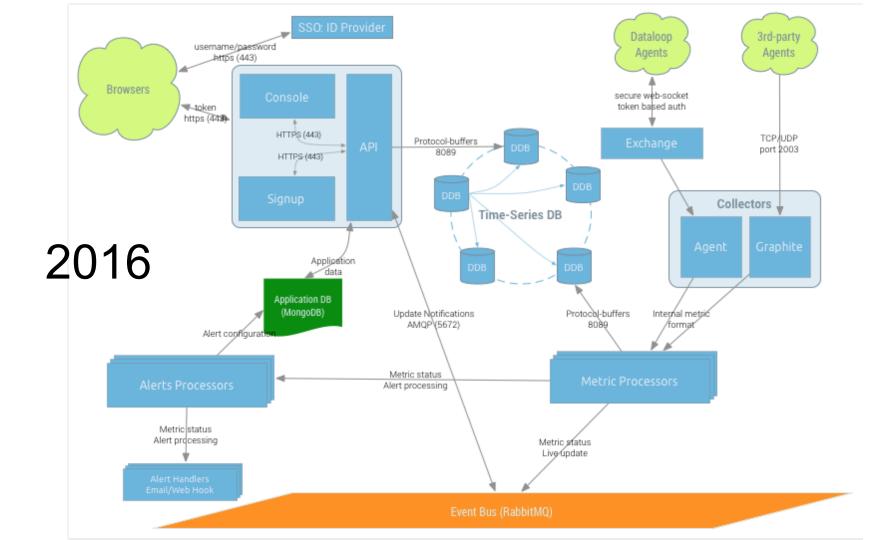
Gro	aph	General	Metrics	Axes	Legend	Display	y Time range	
→ A	FROM	dataloop:prod	uction WHE	RE dl:tag	× = ap	p AND d	di:tag = prod +	≡
	SELECT	newrelic	throughput					
	ALIAS	\$dl:hostname	•		egate netic	SHIFT B	Time interval	
				Com	bine	confident	ence	
₿	Panel data	source de	fault 🚽 🚽	- Adi Trans	form	 derivate 	te de la constant de	

But did you try..

Open Source Time Series DB Comparison 🛛 🚖 🖿

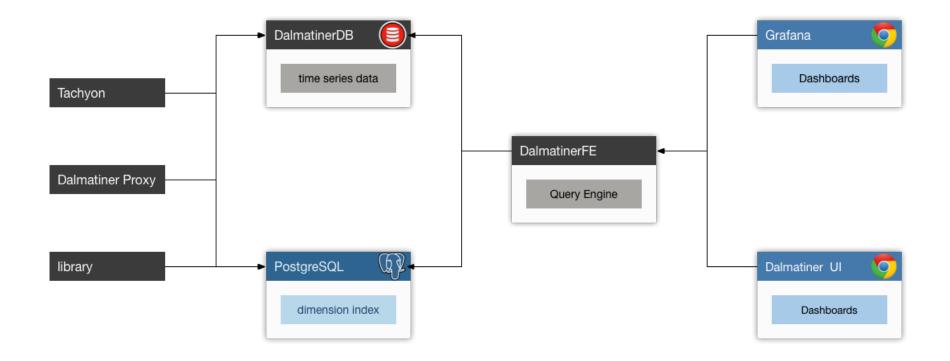
File Edit View Insert Format Data Tools Add-ons Help All changes saved in Drive

steven.acreman@dataloop.io 👻


Comments

🔇 Share

ēκ ~ 7 ? ε % .0, .0, 123 · Arial · 12 · Β Ζ ÷ Α · ♦, - Ξ · Ε · Τ · Η · Θ⊃ ⊒ ⊡ 文 · Σ ·


fx	Category					
	А	В	С	D	E	
1	read this blog before commenting	DalmatinerDB	InfluxDB	Prometheus	Riak TS	Ope
2	Website	https://dalmatiner.io/	https://influxdata.com/	https://prometheus.io/	http://basho.com/products/riak-ts	s http:
3	Description	Fast distributed purpose built metric store	Highly available, performant and simple to use time series database	An open-source monitoring system with a dimensional data model, flexible query language, efficient time series database and modern alerting approach.	Enterprise grade time series database engineered to be faster than Cassandra	Stor mas serie gran
4	Category	Real-time Analytics	Real-time Analytics	Monitoring System	Real-time Analytics	Rea
5	Supported Measurements	metrics	metrics, events	metrics	metrics	metr
6	Consistency Model (CAP theorem)	AP (EC)	-	-	AP	AP
7	Sharding and Replication	Automatic	Manual	Manual (supports federation)	Automatic	Auto
8	High Availability (HA)	Clustering	Double writing 2 servers	Double writing 2 servers	Clustering	Clus
9	Underlying Technology	Erlang, Riak Core, ZFS, PostgreSQL	Golang	Golang	Erlang, Riak KV	Java
10	Operational Complexity	Medium	Low (medium with HA)	Low	Medium	High
11	Storage Backend	Custom	Custom	Custom	leveldb	Had
12	Supported Data Types	float62, int56	int64, float64, bool, and string	float64	string, int64, double, bool, timest	¦a int6∠
13	Bytes per point after compression	1	2.2	1.3		12
14	Metric Precision	variable per bucket (milli second)	nano second	milli second	milli second	milli
15	Recording type	fixed interval	events	fixed interval	events	fixec
16	Write Performance - Single Node	2.5 - 3.5 million metrics / sec	470k metrics / sec (custom HW)	800k metrics / sec	32k metrics / sec (calculated 130) <u>32k</u>
47	White Destances & Made Cluster	4E 00 million motion (and (aslaulated has			100k motion / con	100
	+ E Feature Comparison - Query Perform	mance 👻			E 🖬	Explore

https://blog.dataloop.io/time-series-database-benchmarks

PS. Dataloop is hiring Erlang developers!

More about DalmatinerDB

Story time

The language that isn't performant

A long long time ago (6.31152E+07 seconds)

Monitoring a cloud

Finding a solution blew up

That (other) crazy person at EUC who doesn't know it's his fault

s.Sum += n

Algorithm beats bare s

```
// constant-space mean update:
sum := s.Mean*float64(s.Count) + n
s.Mean = sum / float64(s.Count+1)
```

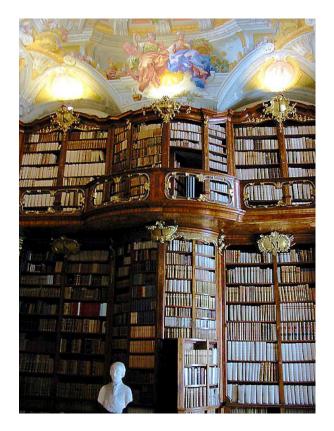
s.Count++

Reinventing the wheel

Without reinventing the wheel

ZFS

- Compression
- Checksumming
- Snapshots


riak_core

- Distribution
- Cluster management
- Scaling

Postgres

- Dimensions
- Relational data
- Fast lookups
- Complex queries

Data layout (shiny new feature)

- Fully positionally indexed
- Very compressible yay zfs!
- 64 bit per data point stored at ~1 k
- As simple as it gets

Query Engine (shiny new feature)

- Streaming query engine
- Typed SQL like function based language
- Data crunching done in C oh my!

Serverless infrastructure my ass

Serverless infrastructure, my assumption is we are talking about informed decisions regarding state and its location

Stateless Components

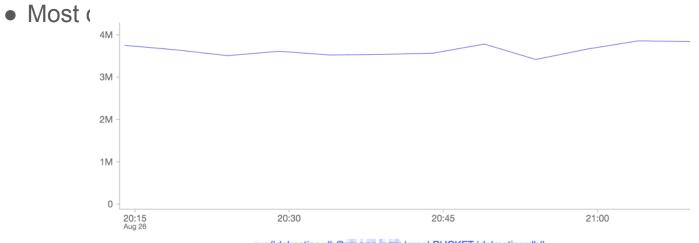
- Frontend / Query Engine
- Proxy

Stateful Components

- Postgres Metric Metadata
- DalmatinerDB Metric Data

Combining Stateful and Stateless

- Minimal highly stable API between them
- Very modular
- Important: difference between internal and external API
- Features can be implemented in the parts when they matter
- Reduces downtime and maintenance requirements
- Fast iterations w/o compromising data
- One change that required updating two components at the same time in the past two years


Showing off

Write Performance

- 16 core vCPU
- 110GB RAM
- 10.000G Disk

Write Performance

- 2.5-3.5 Million metrics ingested per second
- Thanks to riak_core architecture scales near linear

	min (ms)	mean (ms)	95%	99%	max (ms)
1 hosts, rand 12hr by 1m					
rand 8 hosts, rand 12hr by 1m					
all hosts, rand 1day by 1hour					

		min (ms)	mean (ms)	95%	99%	max (ms)
1 hosts, rand 12hr by 1m						
	influxdb	3.78	8.17	30.15	34.61	159.56
	dalmatinerdb	13.3	14.84	16.58	18.63	21.51
	cassandra	264.6	571.9	2110.5	2422.7	11169.2
	elasticsearch	13.23	28.595	105.525	121.135	558.46
rand 8 hosts, rand 12hr by 1m						
all hosts, rand 1day by 1hour						

		min (ms)	mean (ms)	95%	99%	max (ms)
1 hosts, rand 12hr by 1m						
	influxdb	3.78	8.17	30.15	34.61	159.56
	dalmatinerdb	13.3	14.84	16.58	18.63	21.51
	cassandra	264.6	571.9	2110.5	2422.7	11169.2
	elasticsearch	13.23	28.595	105.525	121.135	558.46
rand 8 hosts, rand 12hr by 1m						
	influxdb	10.25	40.34	206.3	233.65	262.19
	dalmatinerdb	20.85	24	27.92	32.68	35.04
	cassandra	1722	6777.12	34658.4	39253.2	44047.92
all hosts, rand 1day by 1hour						

		min (ms)	mean (ms)	95%	99%	max (ms)
1 hosts, rand 12hr by 1m						
	influxdb	3.78	8.17	30.15	34.61	159.56
	dalmatinerdb	13.3	14.84	16.58	18.63	21.51
	cassandra	264.6	571.9	2110.5	2422.7	11169.2
	elasticsearch	13.23	28.595	105.525	121.135	558.46
rand 8 hosts, rand 12hr by 1m						
	influxdb	10.25	40.34	206.3	233.65	262.19
	dalmatinerdb	20.85	24	27.92	32.68	35.04
	cassandra	1722	6777.12	34658.4	39253.2	44047.92
all hosts, rand 1day by 1hour						
	influxdb	18.6	60.17	268.97	291.88	315.33
	dalmatinerdb	18.99	23.65	28.07	33.57	59.24
	cassandra	372	1203.4	5379.4	5837.6	6306.6

The End!

(please try DalmatinerDB) ..and Project Fifo and Dataloop.IO

