
Winning
as a

Start-up
by

Failing Fast
Torben Hoffmann

Chief Architect @ Basho
thoffmann@basho.com

@LeHoff

90% of all start-ups fail

source: http://www.forbes.com/sites/neilpatel/2015/01/16/90-of-startups-will-fail-heres-what-you-need-to-know-about-the-10/#2f77631555e1

http://www.forbes.com/sites/neilpatel/2015/01/16/90-of-startups-will-fail-heres-what-you-need-to-know-about-the-10/#2f77631555e1

The other 10%

 Characteristics:
 The product is perfect for the market
 The entrepreneur does not ignore anything
 The company grows fast
 The team knows how to recover

The Message

 Evolving your start-up through
 Building your system with

 failures!!!

users

time

Fail Fast!

Embrace failure!!

From zero to $$$

Problem/
solution

fit

Stage 1

Problem/
market

fit

Stage 2

Scale

Stage 3

Focus:
Experiments:

Validated learning
Pivots

Focus:
Experiments:

Growth
Optimizations

Development Speed

 Many stacks have this

Experiments

 Try new things
 Keep the system running

Pivot

 Must be easy to tweak your code
 and re-use parts of it

I have not failed. I've
just found 10,000 ways

that won't work.”
Thomas A. Edison

All failures are created
equal, but some are

more equal than others…

Good Failures

 Leads to insights about your business
 A step towards a business model that
works

Bad Failures

 Downtime due to bad quality software
 Tech choices that limits exploitation of
business failures

Silver Bullet

 Fred Brooks differentiates between:
 Essential complexity
 Accidental complexity

Changeability

 Software spends 80% of its life in
maintenance
 …so you’d better write it so it is easy to
change!

1st data model is wrong

2nd data model is wrong

by induction…

all data models
are

wrong

NoSQL

 Flexibility ⇒ velocity drops slower

 Don’t use schemas unless…
 your middlename is Schema
 and your lastname is von Upgrade

RiakKV on one node?

 You can do it, but not optimal :-(
 Benefits on availability when you scale
 Either way - the DAL gives you freedom

NoSQL with Mnesia

-record(entry,

 { key,

 value }).

 Simple record:

 value is of whatever type you feel like

Share Nothing

 Only one thing breaks.

Failures

Anything that can go wrong,
will go wrong.

Murphy

Programming errors
Disk failures
Network failures

source: http://www.krug-soft.com/297.html

Whatever can happen will
happen.

De Morgan

http://www.krug-soft.com/297.html

Fault In-Tolerance
Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

source: http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/
should-we-be-worried-about-this-brooklyn-measles-outbreak

http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/should-we-be-worried-about-this-brooklyn-measles-outbreak

Fault Tolerance

Erlang/Elixir is fault tolerant by design
 ⇒ failures are embraced and managed

Ho ho ho - now I
have a supervisor

Benefits of
fail-fast & supervision

code that solves
the problem

Erlang @ 3x
Source: http://www.slideshare.net/
JanHenryNystrom/productivity-
gains-in-erlang

Data Mobility component breakdown

Embrace failure!!

If you can wrap failure
you might have a

product

Riak’s Sweetspot

Disk failures
Network failures

Riak’s Solution

 Replicate data to counter failing nodes
 Detect failing nodes and provide substitutes
 Handoff - return data to rightful owner
 AAE - repair after failures

Realities of software
development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Product
Owner????

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Business benefits of
supervisors

 Only one process dies
 isolation gives continuous service

 Corner cases can be fixed at leisure
 Product owner in charge!
 Not the software!

Software architecture
that supports

iterative development

This is not a warning…
this is a threat!

Clean APIs

 One module to front an app
 Send messages through a module API

I have the pid, can’t I
just bang it a message?

No, please don’t!!!

I know it is a GenServer,
can’t I just GenServer.call it? How do you

want to die?

Source: https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj14bL92rDMAhWIoD4KHd9ADVQQjRwIBw&url=https%3A%2F
%2Fwww.cartoonstock.com%2Fdirectory%2Fm%2Fmedieval_family.asp&bvm=bv.120853415,d.dmo&psig=AFQjCNGBYIYUGnOti-7ULAPsG_rj8hrc7g&ust=1461911491500319

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj14bL92rDMAhWIoD4KHd9ADVQQjRwIBw&url=https://www.cartoonstock.com/directory/m/medieval_family.asp&bvm=bv.120853415,d.dmo&psig=AFQjCNGBYIYUGnOti-7ULAPsG_rj8hrc7g&ust=1461911491500319

Protocols

Protocol
=

How to solve a problem
together

Ostrich Development

 You can document your
protocols or not, they are
still there!!

 source: http://www.joy-of-cartoon-pictures.com/images/ostrich-cartoon.jpg

 Embrace them in design and stay in control
 Cheaper to change a diagram than code…

http://www.joy-of-cartoon-pictures.com/images/ostrich-cartoon.jpg

Interaction
Diagram

Message
Sequence

Chart

Limit the Logic

 Let each process deal with its own stuff
 Leave complicated coordination to others

Buy Stocks

Co
mpli

cat
ed

!!!

Buy Stocks Simplified

Clean Code

 Had I read it back then…
 the temporal nature of the 1st design
would have been avoided!

Putting it together

Stateful is the new black!

Architecture

Phoenix/Cowboy

CoolApp

DAL

DAL: Data Abstraction Layer

RiakKV/Mnesia

Elm

Failures

 Embrace them
 Learn from them

THANK YOU!

WE’RE HIRING!
• UK Client Service Engineer
• Developer Advocate EMEA

bashojobs.theresumator.com

VISIT OUR STAND
Experience our Riak TS demo and be

entered to win a Scalextric set!
Get your invitation to our IoT Riak TS

Roadshow

