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WHAT IS IT?

CONCURRENCY FOUNT

• A reservoir of pre-spawned 
processes with a regulated 
replacement behaviour 

• A principled approach to 
using background tasks with 
back-pressure controls 

• Part of Erlang Patterns of 
Concurrency https://
github.com/duomark/epocxy

https://github.com/duomark/epocxy


gen_server

requestrequest

responseresponse

33

33
22
11

11

11

mailbox

GEN_SERVER
SIMPLE CLIENT SERVER TASK
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RESPONSE WORKERS
GEN_SERVER + NOREPLY TO AVOID LATENCY



AVOIDING CATASTROPHIC FAILURE

RESPONSE WORKERS (CONT.)

• What if there is a large spike in requests? 

• One worker process per request 

• Memory and CPU pressure can crash the VM 

• Cap the number of active processes 

• Epocxy cxy_ctl maintains concurrency counts by category in ets 

• Refuses to execute (or runs inline) when limit exceeded 

• Still have reduced latency, without catastrophic failure risk



ERRATIC WORK LOAD

PERFORMANCE TUNING

• Bursty traffic results in heavier CPU load 

• Cost of a spawn is concentrated; memory load heavy 

• Effects all other work done by server 

• Closer look reveals short-duration tasks 

• Spawn can be 100-1000x slower than message send 

• Quick tasks benefit from pre-spawned processes 

• Worker pools to the rescue!
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OVERVIEW

WORKER POOLS

• Erlang makes them easy! 

• Lots of libraries available! 

• Until issues, then details, 
problems, and finally 
catastrophic failure…



ADVANTAGES

WORKER POOL

• Provide (typically) fixed amount of concurrency 

• Workers are supervised for replacement on failure 

• Tasks are usually a variety of (not dedicated) function calls 

• Long-lived processes, no spawn latency 

• Implemented as a library (presumably replaceable) 

• Blockage on a per-worker basis if overloaded



FEATURES

WORKER POOL

• + CPU usage is predictable due to stable pool size 

• + Work load spread until more tasks than workers 

• +/- Task assignment backup on mailbox common (crash loses tasks) 

• - Committed tasks can't be withdrawn from mailbox 

• - Workers may have process dictionary artifacts 

• - Process staleness issues cause fragmentation and GC 

• - No back pressure mechanism on overload 

• Advanced pools: shared task queue, worker decay, forced replacement



FAILURE

WORKER POOL

• Supervisor launches replacement workers 

• Multiple failures can overload supervisor 

• Repeated failure can crash supervisor and pool itself 

• Pool crashes can trigger restart storms 

• Repeated supervisor failure takes out application 

• Eliminating supervisor makes worker replacement hard 

• Bottleneck issues are pervasive in naive implementations 

• Supervisor generally only exists to limit pool size



FAILURE (CONT.)

WORKER POOL

• Load balancing not easy (round-robin, random, sampled) 

• Can't predict how long worker will be busy 

• Solution: Task assignment only when worker is idle 

• Shared worker queue buffer of pending tasks 

• Yet another coordination/locking mechanism 

• Protection of queue in face of failure 

• Supervisor restart has to deal with pending queue issues
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RESERVOIR OF PRE-SPAWNED PROCESSES

CONCURRENCY FOUNT

• One reservoir per task category 

• Limits request spike impact per subsystem  

• Single use process with explicitly defined behaviour 

• All unallocated processes linked to reservoir 

• Allows quick cleanup of idle workers 

• No supervision needed (shouldn’t fail while idle) 

• Tasked processes have no relation to reservoir



TASK ASSIGNMENT

CONCURRENCY FOUNT

• Allocation always returns pid or list of pids 

• Unlinks returned processes from reservoir 

• Optionally sends message to pid(s) before returning them 

• Caller can relink to active computation processes 

• Consumption triggers request for replacement processes 

• Spawn rate regulated by a separate gen_fsm 

• Currently one slab per 1/100th of a second 

• Ultimately will be customizable regulator behaviour
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RESERVOIR IMPLEMENTATION

CONCURRENCY FOUNT

• Slabs of processes 

• Specify number and size of slabs on initialization 

• Dictates size of spike that can be absorbed 

• Latency occurs only when reservoir depleted 

• Task allocation efficiently manages slabs 

• Replacement only occurs as a slab-sized batch of processes



REGULATOR IMPLEMENTATION

CONCURRENCY FOUNT

• Receives replacement requests from reservoir 

• Paces the replacement at one slab per 100th of a second 

• Pace can be adjusted by tuning slab size vs depth 

• Spawning cost doesn’t impact client requests 

• Messages full slabs back to the reservoir 

• Avoids flooding reservoir with messages 

• Interleaves replacement with client requests



FOUNT INTERFACE

CONCURRENCY FOUNT

• Get one or more processes -> returns [pid()] from idle reservoir 

• Task one or more processes with [Msgs] -> returns [pid()] from idle reservoir 

• Each message supplied is passed to a separate idle process 

• Timer, repeat, or continuation retry executed on client call 

• Provides back-pressure by pausing on retry 

• Gives up if not enough resources 

• Caller can react to [] reply 

• Get status of fount 

• Get timing: spawn rate, slab rate, etc.



FOUNT MONITORING

CONCURRENCY FOUNT

• Register one gen_event with the reservoir which notifies: 

• when slab of pids added (to monitor replacement pace) 

• when reservoir empty and pid needed (for overload notification) 

• when regulator reference changed (dynamic pacing) 

• when unknown messages arrive (log or debug errors) 

• when stopped 

• No gen_event is registered by default



BENEFITS

CONCURRENCY FOUNT

• Each worker category requires a behaviour (can be shared across categories) 

• Tasked processes are independent of idle processes 

• Tasked workers not supervised or linked to application by default 

• Idle workers can be replaced or eliminated easily (dynamic resize reservoir) 

• One-shot use avoids staleness issues with workers 

• Reservoir can absorb spikes beyond normal busy size 

• Avoids overload through regulated replacement 

• Pacing enables adaptive, efficient processing 

• Provides back-pressure signals for caller decision-making
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EXAMPLE USING FOUNT
CONCURRENT PER LINE HEXDUMP

Loader splits data to lines, so each worker can format one line



FOUNT BEHAVIORS

CONCURRENT HEXDUMP

%%% create module-specific state inside idle reservoir worker 

-spec init({}) -> {}. 

init({}) -> {}.    % No module state needed 

%%% called by regulator to create pids when replacing a slab 

-spec start_pid(cxy_fount:fount_ref(), {}) -> pid(). 

start_pid(Fount, State) -> 

    cxy_fount:spawn_worker(Fount, ?MODULE, formatter, 

                           [Fount, State]). 

%%% called by API when using cxy_fount:task_pid 

-spec send_msg(Worker, hexdump_cmd()) 

         -> Worker when Worker :: worker(). 

send_msg(Worker, Msg) -> 

    cxy_fount:send_msg(Worker, Msg). 



COLLECT AND REFORMAT RESULTS

CONCURRENT HEXDUMP

%%% Send data to be reported 

-spec format_data (cxy_fount:fount_ref(), binary(), pid()) -> [pid()]. 

format_data(Fount, Data, Hex_Collector) -> 

    cxy_fount:task_pid(Fount, {load, Data, Hex_Collector}). 

%%% Report results from the final format collector process 

-spec report_data  (pid()) -> string() | no_results. 

report_data() -> 

    receive {hexdump, Lines} -> 

            lists:flatten( 

              [io_lib:format("  ~p.  ~s ~s  |~s|  ~p~n", 

                             [Index, Address, Hexpairs, Window, Pid]) 

               || {Index, Address, Hexpairs, Window, Pid} <- Lines]) 

    after 1000 -> no_results 

    end. 



WORKER RECEIVE LOOP

CONCURRENT HEXDUMP

%%% a single message arrives after unlinking from fount 

%%% the freed worker runs to completion 

formatter(Fount, {}) -> 

  %% Fan out of workers: 1 loader, N formatters, or 1 collector 

  %% Each responds to one particular message only. 

  receive 

    %% First stage data loader 

    {load, Data, Caller} when is_binary(Data), is_pid(Caller) -> 

      Lines = split_lines(Data, [], 0), 

      Num_Workers = length(Lines), 

      [Collector | Workers] 

          = cxy_fount:get_pids(Fount, Num_Workers+1), 

      Collector ! {collect, Num_Workers, Caller}, 

      done = send_format_msgs(Workers, Lines, Collector); 



WORKER RECEIVE LOOP (CONT.)

CONCURRENT HEXDUMP

     

   %% Data formatting worker 

   {format, Position, Address, Line, Collector} -> 

     Collector ! {collect, Position, addr(Address), 

                  hex(Line), Line, self()}; 

   %% Collector 

   {collect, Num_Workers, Requester} -> 

     collect_hexdump_lines(array:new(), Num_Workers, Requester) 

end. 



EXAMPLE EXECUTION

CONCURRENT IEXDUMP

1> {ok, P1} = cxy_fount_sup:start_link(hexdump_fount, [{}]). 

{ok,<0.13657.1>} 

2> cxy_fount_sup:get_fount(P1). 

<0.13659.1> 

3> hexdump_fount:format_data(v(2), <<"This is intended to be a fairly long line of text">>, self()).
[<0.13679.1>] 

4> io:format(“~s”, [hexdump_fount:report_data()]). 

  0.  00000000 54 68 69 73 20 69 73 20 69 6e 74 65 6e 64 65 64  |This is intended|  <0.13674.1> 

  1.  00000010 20 74 6f 20 62 65 20 61 20 66 61 69 72 6c 79 20  | to be a fairly |  <0.13675.1> 

  2.  00000020 6c 6f 6e 67 20 6c 69 6e 65 20 6f 66 20 74 65 78  |long line of tex|  <0.13676.1> 

  3.  00000030 74                                               |t|                 <0.13677.1> 



CONCLUSION

CONCURRENCY FOUNT

• Worker pools provide generic reused processes 

• Overload leads to lost tasks, or complicated queuing 

• Hierarchy and bottlenecks lead to catastrophic failures 

• Back-pressure is not intrinsic, hard to add to pool 

• Concurrency fount is a stream of fresh, independent processes 

• Application is free to combine them dynamically 

• Simplicity in mechanism removes bottlenecks and hierarchy 

• Pace-regulation of spawns provides back-pressure naturally


