
A PACE-REGULATED SUPPLY
OF NEWLY SPAWNED

PROCESSES

CONCURRENCY FOUNT:

Jay Nelson https://github.com/duomark/epocxy @duomark

https://github.com/duomark/epocxy

ApplicationApplication

Concurrency FountConcurrency Fount

Process
Reservoir
Process

Reservoir

Refill
Regulator

Refill
Regulator

WorkersWorkers

WorkersWorkers

WHAT IS IT?

CONCURRENCY FOUNT

• A reservoir of pre-spawned
processes with a regulated
replacement behaviour

• A principled approach to
using background tasks with
back-pressure controls

• Part of Erlang Patterns of
Concurrency https://
github.com/duomark/epocxy

https://github.com/duomark/epocxy

gen_server

requestrequest

responseresponse

33

33
22
11

11

11

mailbox

GEN_SERVER
SIMPLE CLIENT SERVER TASK

requestrequest

33

33
22
11

gen_server

11

mailbox

responseresponse

responseresponse

responseresponse
33

22

11 pid1

pid2

pid3

RESPONSE WORKERS
GEN_SERVER + NOREPLY TO AVOID LATENCY

AVOIDING CATASTROPHIC FAILURE

RESPONSE WORKERS (CONT.)

• What if there is a large spike in requests?

• One worker process per request

• Memory and CPU pressure can crash the VM

• Cap the number of active processes

• Epocxy cxy_ctl maintains concurrency counts by category in ets

• Refuses to execute (or runs inline) when limit exceeded

• Still have reduced latency, without catastrophic failure risk

ERRATIC WORK LOAD

PERFORMANCE TUNING

• Bursty traffic results in heavier CPU load

• Cost of a spawn is concentrated; memory load heavy

• Effects all other work done by server

• Closer look reveals short-duration tasks

• Spawn can be 100-1000x slower than message send

• Quick tasks benefit from pre-spawned processes

• Worker pools to the rescue!

Simple

Load
Balance

Supervisor

Workers

Application Task
Queue

Adv

OVERVIEW

WORKER POOLS

• Erlang makes them easy!

• Lots of libraries available!

• Until issues, then details,
problems, and finally
catastrophic failure…

ADVANTAGES

WORKER POOL

• Provide (typically) fixed amount of concurrency

• Workers are supervised for replacement on failure

• Tasks are usually a variety of (not dedicated) function calls

• Long-lived processes, no spawn latency

• Implemented as a library (presumably replaceable)

• Blockage on a per-worker basis if overloaded

FEATURES

WORKER POOL

• + CPU usage is predictable due to stable pool size

• + Work load spread until more tasks than workers

• +/- Task assignment backup on mailbox common (crash loses tasks)

• - Committed tasks can't be withdrawn from mailbox

• - Workers may have process dictionary artifacts

• - Process staleness issues cause fragmentation and GC

• - No back pressure mechanism on overload

• Advanced pools: shared task queue, worker decay, forced replacement

FAILURE

WORKER POOL

• Supervisor launches replacement workers

• Multiple failures can overload supervisor

• Repeated failure can crash supervisor and pool itself

• Pool crashes can trigger restart storms

• Repeated supervisor failure takes out application

• Eliminating supervisor makes worker replacement hard

• Bottleneck issues are pervasive in naive implementations

• Supervisor generally only exists to limit pool size

FAILURE (CONT.)

WORKER POOL

• Load balancing not easy (round-robin, random, sampled)

• Can't predict how long worker will be busy

• Solution: Task assignment only when worker is idle

• Shared worker queue buffer of pending tasks

• Yet another coordination/locking mechanism

• Protection of queue in face of failure

• Supervisor restart has to deal with pending queue issues

ApplicationApplication

Concurrency FountConcurrency Fount

Process
Reservoir
Process

Reservoir

Refill
Regulator

Refill
Regulator

WorkersWorkers

WorkersWorkers

CONCURRENCY FOUNT
LOAD REGULATED WORKERS

RESERVOIR OF PRE-SPAWNED PROCESSES

CONCURRENCY FOUNT

• One reservoir per task category

• Limits request spike impact per subsystem

• Single use process with explicitly defined behaviour

• All unallocated processes linked to reservoir

• Allows quick cleanup of idle workers

• No supervision needed (shouldn’t fail while idle)

• Tasked processes have no relation to reservoir

TASK ASSIGNMENT

CONCURRENCY FOUNT

• Allocation always returns pid or list of pids

• Unlinks returned processes from reservoir

• Optionally sends message to pid(s) before returning them

• Caller can relink to active computation processes

• Consumption triggers request for replacement processes

• Spawn rate regulated by a separate gen_fsm

• Currently one slab per 1/100th of a second

• Ultimately will be customizable regulator behaviour

Fount Supervisor

Regulator Reservoir Application

allocate slab

supply slab

pid

CONCURRENCY FOUNT
PROCESS REPLACEMENT

RESERVOIR IMPLEMENTATION

CONCURRENCY FOUNT

• Slabs of processes

• Specify number and size of slabs on initialization

• Dictates size of spike that can be absorbed

• Latency occurs only when reservoir depleted

• Task allocation efficiently manages slabs

• Replacement only occurs as a slab-sized batch of processes

REGULATOR IMPLEMENTATION

CONCURRENCY FOUNT

• Receives replacement requests from reservoir

• Paces the replacement at one slab per 100th of a second

• Pace can be adjusted by tuning slab size vs depth

• Spawning cost doesn’t impact client requests

• Messages full slabs back to the reservoir

• Avoids flooding reservoir with messages

• Interleaves replacement with client requests

FOUNT INTERFACE

CONCURRENCY FOUNT

• Get one or more processes -> returns [pid()] from idle reservoir

• Task one or more processes with [Msgs] -> returns [pid()] from idle reservoir

• Each message supplied is passed to a separate idle process

• Timer, repeat, or continuation retry executed on client call

• Provides back-pressure by pausing on retry

• Gives up if not enough resources

• Caller can react to [] reply

• Get status of fount

• Get timing: spawn rate, slab rate, etc.

FOUNT MONITORING

CONCURRENCY FOUNT

• Register one gen_event with the reservoir which notifies:

• when slab of pids added (to monitor replacement pace)

• when reservoir empty and pid needed (for overload notification)

• when regulator reference changed (dynamic pacing)

• when unknown messages arrive (log or debug errors)

• when stopped

• No gen_event is registered by default

BENEFITS

CONCURRENCY FOUNT

• Each worker category requires a behaviour (can be shared across categories)

• Tasked processes are independent of idle processes

• Tasked workers not supervised or linked to application by default

• Idle workers can be replaced or eliminated easily (dynamic resize reservoir)

• One-shot use avoids staleness issues with workers

• Reservoir can absorb spikes beyond normal busy size

• Avoids overload through regulated replacement

• Pacing enables adaptive, efficient processing

• Provides back-pressure signals for caller decision-making

Fount Workers

Loader Collector

Formatter

Formatter

Formatter

format_data report_data
External API

EXAMPLE USING FOUNT
CONCURRENT PER LINE HEXDUMP

Loader splits data to lines, so each worker can format one line

FOUNT BEHAVIORS

CONCURRENT HEXDUMP

%%% create module-specific state inside idle reservoir worker

-spec init({}) -> {}.

init({}) -> {}. % No module state needed

%%% called by regulator to create pids when replacing a slab

-spec start_pid(cxy_fount:fount_ref(), {}) -> pid().

start_pid(Fount, State) ->

 cxy_fount:spawn_worker(Fount, ?MODULE, formatter,

 [Fount, State]).

%%% called by API when using cxy_fount:task_pid

-spec send_msg(Worker, hexdump_cmd())

 -> Worker when Worker :: worker().

send_msg(Worker, Msg) ->

 cxy_fount:send_msg(Worker, Msg).

COLLECT AND REFORMAT RESULTS

CONCURRENT HEXDUMP

%%% Send data to be reported

-spec format_data (cxy_fount:fount_ref(), binary(), pid()) -> [pid()].

format_data(Fount, Data, Hex_Collector) ->

 cxy_fount:task_pid(Fount, {load, Data, Hex_Collector}).

%%% Report results from the final format collector process

-spec report_data (pid()) -> string() | no_results.

report_data() ->

 receive {hexdump, Lines} ->

 lists:flatten(

 [io_lib:format(" ~p. ~s ~s |~s| ~p~n",

 [Index, Address, Hexpairs, Window, Pid])

 || {Index, Address, Hexpairs, Window, Pid} <- Lines])

 after 1000 -> no_results

 end.

WORKER RECEIVE LOOP

CONCURRENT HEXDUMP

%%% a single message arrives after unlinking from fount

%%% the freed worker runs to completion

formatter(Fount, {}) ->

 %% Fan out of workers: 1 loader, N formatters, or 1 collector

 %% Each responds to one particular message only.

 receive

 %% First stage data loader

 {load, Data, Caller} when is_binary(Data), is_pid(Caller) ->

 Lines = split_lines(Data, [], 0),

 Num_Workers = length(Lines),

 [Collector | Workers]

 = cxy_fount:get_pids(Fount, Num_Workers+1),

 Collector ! {collect, Num_Workers, Caller},

 done = send_format_msgs(Workers, Lines, Collector);

WORKER RECEIVE LOOP (CONT.)

CONCURRENT HEXDUMP

 %% Data formatting worker

 {format, Position, Address, Line, Collector} ->

 Collector ! {collect, Position, addr(Address),

 hex(Line), Line, self()};

 %% Collector

 {collect, Num_Workers, Requester} ->

 collect_hexdump_lines(array:new(), Num_Workers, Requester)

end.

EXAMPLE EXECUTION

CONCURRENT IEXDUMP

1> {ok, P1} = cxy_fount_sup:start_link(hexdump_fount, [{}]).

{ok,<0.13657.1>}

2> cxy_fount_sup:get_fount(P1).

<0.13659.1>

3> hexdump_fount:format_data(v(2), <<"This is intended to be a fairly long line of text">>, self()).
[<0.13679.1>]

4> io:format(“~s”, [hexdump_fount:report_data()]).

 0. 00000000 54 68 69 73 20 69 73 20 69 6e 74 65 6e 64 65 64 |This is intended| <0.13674.1>

 1. 00000010 20 74 6f 20 62 65 20 61 20 66 61 69 72 6c 79 20 | to be a fairly | <0.13675.1>

 2. 00000020 6c 6f 6e 67 20 6c 69 6e 65 20 6f 66 20 74 65 78 |long line of tex| <0.13676.1>

 3. 00000030 74 |t| <0.13677.1>

CONCLUSION

CONCURRENCY FOUNT

• Worker pools provide generic reused processes

• Overload leads to lost tasks, or complicated queuing

• Hierarchy and bottlenecks lead to catastrophic failures

• Back-pressure is not intrinsic, hard to add to pool

• Concurrency fount is a stream of fresh, independent processes

• Application is free to combine them dynamically

• Simplicity in mechanism removes bottlenecks and hierarchy

• Pace-regulation of spawns provides back-pressure naturally

