
Designing and
Evaluating a
Distributed Computing
Language Runtime
Christopher Meiklejohn (@cmeik)
Université catholique de Louvain, Belgium

1

RA

RB

RA

RB

1

set(1)

RA

RB

1

set(1)

3

2

set(2)

set(3)

RA

RB

1

set(1)

3

2

set(2)

set(3)

?

?

Synchronization
• To enforce an order  

Makes programming easier

6

Synchronization
• To enforce an order  

Makes programming easier

• Eliminate accidental nondeterminism 
Prevent race conditions

6

Synchronization
• To enforce an order  

Makes programming easier

• Eliminate accidental nondeterminism 
Prevent race conditions

• Techniques 
Locks, mutexes, semaphores, monitors,
etc.

6

Difficult Cases
• “Internet of Things”,  

Low power, limited memory and
connectivity

7

Difficult Cases
• “Internet of Things”,  

Low power, limited memory and
connectivity

• Mobile Gaming 
Offline operation with replicated, shared
state

7

Weak Synchronization
• Can we achieve anything without synchronization? 

Not really.

8

Weak Synchronization
• Can we achieve anything without synchronization? 

Not really.

• Strong Eventual Consistency (SEC) 
“Replicas that deliver the same updates have equivalent state”

8

Weak Synchronization
• Can we achieve anything without synchronization? 

Not really.

• Strong Eventual Consistency (SEC) 
“Replicas that deliver the same updates have equivalent state”

• Primary requirement 
Eventual replica-to-replica communication

8

Weak Synchronization
• Can we achieve anything without synchronization? 

Not really.

• Strong Eventual Consistency (SEC) 
“Replicas that deliver the same updates have equivalent state”

• Primary requirement 
Eventual replica-to-replica communication

• Order insensitive! (Commutativity)

8

Weak Synchronization
• Can we achieve anything without synchronization? 

Not really.

• Strong Eventual Consistency (SEC) 
“Replicas that deliver the same updates have equivalent state”

• Primary requirement 
Eventual replica-to-replica communication

• Order insensitive! (Commutativity)

• Duplicate insensitive! (Idempotent)

8

RA

RB

RA

RB

1

set(1)

RA

RB

1

set(1)

3

2

set(2)

set(3)

RA

RB

1

3

2

3

3

set(1) set(2)

set(3)

max(2,3)

max(2,3)

How can we succeed with
Strong Eventual
Consistency?

13

Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations
monotonically)

14

Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations
monotonically)

2. Retain the properties of functional
programming 
(ex. confluence, referential transparency over composition)

14

Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations
monotonically)

2. Retain the properties of functional
programming 
(ex. confluence, referential transparency over composition)

3. Distributed, and fault-tolerant runtime 
(ex. replication, membership, dissemination)

14

Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations
monotonically)

2. Retain the properties of functional
programming 
(ex. confluence, referential transparency over composition)

3. Distributed, and fault-tolerant runtime 
(ex. replication, membership, dissemination)

15

Convergent Objects 
Conflict-Free  
Replicated Data Types

16
SSS 2011

Conflict-Free  
Replicated Data Types

• Many types exist with different properties 
Sets, counters, registers, flags, maps,
graphs

17

Conflict-Free  
Replicated Data Types

• Many types exist with different properties 
Sets, counters, registers, flags, maps,
graphs

• Strong Eventual Consistency 
Instances satisfy SEC property per-object

17

RA

RB

RC

RA

RB

RC

{1}

(1, {a}, {})

add(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {c}, {})

add(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {c}, {})

add(1)

{}

(1, {c}, {c})

remove(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {c}, {})

add(1)

{}

(1, {c}, {c})

remove(1)

{1}

{1}

{1}

(1, {a, c}, {c})

(1, {a, c}, {c})

(1, {a, c}, {c})

Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations
monotonically)

2. Retain the properties of functional
programming 
(ex. confluence, referential transparency over composition)

3. Distributed, and fault-tolerant runtime 
(ex. replication, membership, dissemination)

23

Convergent Programs
Lattice Processing

24
PPDP 2015

Lattice Processing (Lasp)
• Distributed dataflow 

Declarative, functional programming model

25

Lattice Processing (Lasp)
• Distributed dataflow 

Declarative, functional programming model

• Convergent data structures 
Primary data abstraction is the CRDT

25

Lattice Processing (Lasp)
• Distributed dataflow 

Declarative, functional programming model

• Convergent data structures 
Primary data abstraction is the CRDT

• Enables composition 
Provides functional composition of CRDTs
that preserves the SEC property

25

26

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

27

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

28

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

29

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

30

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations
monotonically)

2. Retain the properties of functional
programming 
(ex. confluence, referential transparency over composition)

3. Distributed, and fault-tolerant runtime 
(ex. replication, membership, dissemination)

31

Distributed Runtime
Selective Hearing

32
W-PSDS 2015

Selective Hearing
• Epidemic broadcast based runtime system 

Provide a runtime system that can scale to large numbers of
nodes, that is resilient to failures and provides efficient execution

33

Selective Hearing
• Epidemic broadcast based runtime system 

Provide a runtime system that can scale to large numbers of
nodes, that is resilient to failures and provides efficient execution

• Well-matched to Lattice Processing (Lasp)

33

Selective Hearing
• Epidemic broadcast based runtime system 

Provide a runtime system that can scale to large numbers of
nodes, that is resilient to failures and provides efficient execution

• Well-matched to Lattice Processing (Lasp)

• Epidemic broadcast mechanisms provide weak ordering but
are resilient and efficient

33

Selective Hearing
• Epidemic broadcast based runtime system 

Provide a runtime system that can scale to large numbers of
nodes, that is resilient to failures and provides efficient execution

• Well-matched to Lattice Processing (Lasp)

• Epidemic broadcast mechanisms provide weak ordering but
are resilient and efficient

• Lasp’s programming model is tolerant to message re-ordering,
disconnections, and node failures

33

Selective Hearing
• Epidemic broadcast based runtime system 

Provide a runtime system that can scale to large numbers of
nodes, that is resilient to failures and provides efficient execution

• Well-matched to Lattice Processing (Lasp)

• Epidemic broadcast mechanisms provide weak ordering but
are resilient and efficient

• Lasp’s programming model is tolerant to message re-ordering,
disconnections, and node failures

• “Selective Receive” 
Nodes selectively receive and process messages based on
interest.

33

Layered Approach

34

Layered Approach
• Membership 

Configurable membership protocol which can operate
in a client-server or peer-to-peer mode

34

Layered Approach
• Membership 

Configurable membership protocol which can operate
in a client-server or peer-to-peer mode

• Broadcast (via Gossip, Tree, etc.) 
Efficient dissemination of both program state and
application state via gossip, broadcast tree, or hybrid
mode

34

Layered Approach
• Membership 

Configurable membership protocol which can operate
in a client-server or peer-to-peer mode

• Broadcast (via Gossip, Tree, etc.) 
Efficient dissemination of both program state and
application state via gossip, broadcast tree, or hybrid
mode

• Auto-discovery 
Integration with Mesos, auto-discovery of Lasp nodes
for ease of configurability

34

Membership Overlay

Membership Overlay

Broadcast Overlay

Membership Overlay

Broadcast Overlay

Membership Overlay

Broadcast Overlay

Mobile Phone

Membership Overlay

Broadcast Overlay

Mobile Phone

Distributed Hash Table

Membership Overlay

Broadcast Overlay

Mobile Phone

Distributed Hash Table

Lasp Execution

Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations
monotonically)

2. Retain the properties of functional
programming 
(ex. confluence, referential transparency over composition)

3. Distributed, and fault-tolerant runtime 
(ex. replication, membership, dissemination)

41

What can we build?
Advertisement Counter

42

Advertisement Counter
• Mobile game platform selling

advertisement space 
Advertisements are paid according to a
minimum number of impressions

43

Advertisement Counter
• Mobile game platform selling

advertisement space 
Advertisements are paid according to a
minimum number of impressions

• Clients will go offline 
Clients have limited connectivity and the
system still needs to make progress while
clients are offline

43

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

44

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

45

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

46

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

47

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

48

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

49

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

50

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

51

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

52

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Evaluation
Initial Evaluation

53

Background
Distributed Erlang

• Transparent distribution 
Built-in, provided by Erlang/BEAM, cross-node
message passing.

54

Background
Distributed Erlang

• Transparent distribution 
Built-in, provided by Erlang/BEAM, cross-node
message passing.

• Known scalability limitations 
Analyzed in academic in various publications.

54

Background
Distributed Erlang

• Transparent distribution 
Built-in, provided by Erlang/BEAM, cross-node
message passing.

• Known scalability limitations 
Analyzed in academic in various publications.

• Single connection 
Head of line blocking.

54

Background
Distributed Erlang

• Transparent distribution 
Built-in, provided by Erlang/BEAM, cross-node
message passing.

• Known scalability limitations 
Analyzed in academic in various publications.

• Single connection 
Head of line blocking.

• Full membership 
All-to-all failure detection with heartbeats and
timeouts.

54

Background
Erlang Port Mapper Daemon
• Operates on a known port 

Similar to Solaris sunrpc style portmap:
known port for mapping to dynamic port-
based services.

55

Background
Erlang Port Mapper Daemon
• Operates on a known port 

Similar to Solaris sunrpc style portmap:
known port for mapping to dynamic port-
based services.

• Bridged networking 
Problematic for cluster in bridged
networking with dynamic port allocation.

55

Experiment Design
• Single application 

Advertisement counter example from Rovio Entertainment.

56

Experiment Design
• Single application 

Advertisement counter example from Rovio Entertainment.

• Runtime configuration 
Application controlled through runtime environment
variables.

56

Experiment Design
• Single application 

Advertisement counter example from Rovio Entertainment.

• Runtime configuration 
Application controlled through runtime environment
variables.

• Membership 
Full membership with Distributed Erlang via EPMD.

56

Experiment Design
• Single application 

Advertisement counter example from Rovio Entertainment.

• Runtime configuration 
Application controlled through runtime environment
variables.

• Membership 
Full membership with Distributed Erlang via EPMD.

• Dissemination 
State-based object dissemination through anti-entropy
protocol (fanout-based, PARC-style.)

56

Experiment Orchestration
• Docker and Mesos with Marathon 

Used for deployment of both EPMD and Lasp application.

57

Experiment Orchestration
• Docker and Mesos with Marathon 

Used for deployment of both EPMD and Lasp application.

• Single EPMD instance per slave 
Controlled through the use of host networking and
HOSTNAME: UNIQUE constraints in Mesos.

57

Experiment Orchestration
• Docker and Mesos with Marathon 

Used for deployment of both EPMD and Lasp application.

• Single EPMD instance per slave 
Controlled through the use of host networking and
HOSTNAME: UNIQUE constraints in Mesos.

• Lasp 
Local execution using host networking: connects to local
EPMD.

57

Experiment Orchestration
• Docker and Mesos with Marathon 

Used for deployment of both EPMD and Lasp application.

• Single EPMD instance per slave 
Controlled through the use of host networking and
HOSTNAME: UNIQUE constraints in Mesos.

• Lasp 
Local execution using host networking: connects to local
EPMD.

• Service Discovery 
Service discovery facilitated through clustering EPMD
instances through Sprinter.

57

Ideal Experiment
• Local Deployment 

High thread concurrency when operating
with lower node count.

58

Ideal Experiment
• Local Deployment 

High thread concurrency when operating
with lower node count.

• Cloud Deployment 
Low thread concurrency when operating
with a higher node count.

58

Results
Initial Evaluation

59

Initial Evaluation
• Moved to DC/OS exclusively 

Environments too different: too much work needed to be adapted
for things to work correctly.

60

Initial Evaluation
• Moved to DC/OS exclusively 

Environments too different: too much work needed to be adapted
for things to work correctly.

• Single orchestration task 
Dispatched events, controlled when to start and stop the
evaluation and performed log aggregation.

60

Initial Evaluation
• Moved to DC/OS exclusively 

Environments too different: too much work needed to be adapted
for things to work correctly.

• Single orchestration task 
Dispatched events, controlled when to start and stop the
evaluation and performed log aggregation.

• Bottleneck 
Events immediately dispatched: would require blocking for
processing acknowledgment.

60

Initial Evaluation
• Moved to DC/OS exclusively 

Environments too different: too much work needed to be adapted
for things to work correctly.

• Single orchestration task 
Dispatched events, controlled when to start and stop the
evaluation and performed log aggregation.

• Bottleneck 
Events immediately dispatched: would require blocking for
processing acknowledgment.

• Unrealistic 
Events do not queue up all at once for processing by the client.

60

Lasp Difficulties
• Too expensive 

2.0 CPU and 2048 MiB of memory.

61

Lasp Difficulties
• Too expensive 

2.0 CPU and 2048 MiB of memory.

• Weeks spent adding instrumentation 
Process level, VM level, Erlang Observer instrumentation to
identify heavy CPU and memory processes.

61

Lasp Difficulties
• Too expensive 

2.0 CPU and 2048 MiB of memory.

• Weeks spent adding instrumentation 
Process level, VM level, Erlang Observer instrumentation to
identify heavy CPU and memory processes.

• Dissemination too expensive 
1000 threads to a single dissemination process (one Mesos
task) leads to backed up message queues and memory leaks.

61

Lasp Difficulties
• Too expensive 

2.0 CPU and 2048 MiB of memory.

• Weeks spent adding instrumentation 
Process level, VM level, Erlang Observer instrumentation to
identify heavy CPU and memory processes.

• Dissemination too expensive 
1000 threads to a single dissemination process (one Mesos
task) leads to backed up message queues and memory leaks.

• Unrealistic 
Two different dissemination mechanisms: thread to thread and
node to node: one is synthetic.

61

EPMD Difficulties
• Nodes become unregistered 

Nodes randomly unregistered with EPMD during
execution.

62

EPMD Difficulties
• Nodes become unregistered 

Nodes randomly unregistered with EPMD during
execution.

• Lost connection 
EPMD loses connections with nodes for some
arbitrary reason.

62

EPMD Difficulties
• Nodes become unregistered 

Nodes randomly unregistered with EPMD during
execution.

• Lost connection 
EPMD loses connections with nodes for some
arbitrary reason.

• EPMD task restarted by Mesos 
Restarted for an unknown reason, which leads
Lasp instances to restart in their own container.

62

Overhead Difficulties
• Too much state 

Client would ship around 5 GiB of state within
90 seconds.

63

Overhead Difficulties
• Too much state 

Client would ship around 5 GiB of state within
90 seconds.

• Delta dissemination 
Delta dissemination only provides around a 30%
decrease in state transmission.

63

Overhead Difficulties
• Too much state 

Client would ship around 5 GiB of state within
90 seconds.

• Delta dissemination 
Delta dissemination only provides around a 30%
decrease in state transmission.

• Unbounded queues 
Message buffers would lead to VMs crashing
because of large memory consumption.

63

Evaluation
Rearchitecture

64

Ditch Distributed Erlang
• Pluggable membership service 

Build pluggable membership service with abstract
interface initially on EPMD and later migrate after tested.

65

Ditch Distributed Erlang
• Pluggable membership service 

Build pluggable membership service with abstract
interface initially on EPMD and later migrate after tested.

• Adapt Lasp and Broadcast layer 
Integrate pluggable membership service throughout the
stack and librate existing libraries from distributed
Erlang.

65

Ditch Distributed Erlang
• Pluggable membership service 

Build pluggable membership service with abstract
interface initially on EPMD and later migrate after tested.

• Adapt Lasp and Broadcast layer 
Integrate pluggable membership service throughout the
stack and librate existing libraries from distributed
Erlang.

• Build service discovery mechanism 
Mechanize node discovery outside of EPMD based on
new membership service.

65

Partisan
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

66

Partisan
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

66

Partisan
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

66

Partisan
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

• Full membership via TCP.

66

Partisan
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

• Full membership via TCP.

• Client-server membership via TCP.

66

Partisan
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

• Full membership via TCP.

• Client-server membership via TCP.

• Peer-to-peer membership via TCP (with HyParView)

66

Partisan
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

• Full membership via TCP.

• Client-server membership via TCP.

• Peer-to-peer membership via TCP (with HyParView)

• Visualization 
Provide a force-directed graph-based visualization engine for cluster
debugging in real-time.

66

Partisan
(Full via EPMD or TCP)

• Full membership 
Nodes have full visibility into the entire graph.

67

Partisan
(Full via EPMD or TCP)

• Full membership 
Nodes have full visibility into the entire graph.

• Failure detection 
Performed by peer-to-peer heartbeat messages with a
timeout.

67

Partisan
(Full via EPMD or TCP)

• Full membership 
Nodes have full visibility into the entire graph.

• Failure detection 
Performed by peer-to-peer heartbeat messages with a
timeout.

• Limited scalability 
Heartbeat interval increases when node count
increases leading to false or delayed detection.

67

Partisan
(Full via EPMD or TCP)

• Full membership 
Nodes have full visibility into the entire graph.

• Failure detection 
Performed by peer-to-peer heartbeat messages with a
timeout.

• Limited scalability 
Heartbeat interval increases when node count
increases leading to false or delayed detection.

• Testing 
Used to create the initial test suite for Partisan.

67

Partisan
(Client-Server Model)

• Client-server membership 
Server has all peers in the system as peers; client has
only the server as a peer.

68

Partisan
(Client-Server Model)

• Client-server membership 
Server has all peers in the system as peers; client has
only the server as a peer.

• Failure detection 
Nodes heartbeat with timeout all peers they are aware of.

68

Partisan
(Client-Server Model)

• Client-server membership 
Server has all peers in the system as peers; client has
only the server as a peer.

• Failure detection 
Nodes heartbeat with timeout all peers they are aware of.

• Limited scalability 
Single point of failure: server; with limited scalability on
visibility.

68

Partisan
(Client-Server Model)

• Client-server membership 
Server has all peers in the system as peers; client has
only the server as a peer.

• Failure detection 
Nodes heartbeat with timeout all peers they are aware of.

• Limited scalability 
Single point of failure: server; with limited scalability on
visibility.

• Testing 
Used for baseline evaluations as “reference” architecture.

68

Partisan
(HyParView, default)

• Partial view protocol 
Two views: active (fixed) and passive (log n); passive
used for failure replacement with active view.

69

Partisan
(HyParView, default)

• Partial view protocol 
Two views: active (fixed) and passive (log n); passive
used for failure replacement with active view.

• Failure detection 
Performed by monitoring active TCP connections to
peers with keep-alive enabled.

69

Partisan
(HyParView, default)

• Partial view protocol 
Two views: active (fixed) and passive (log n); passive
used for failure replacement with active view.

• Failure detection 
Performed by monitoring active TCP connections to
peers with keep-alive enabled.

• Very scalable (10k+ nodes during academic
evaluation) 
However, probabilistic; potentially leads to isolated
nodes during churn.

69

Sprinter
(Service Discovery)

• Responsible for clustering tasks 
Uses Partisan to cluster all nodes and ensure connected
overlay network: reads information from Marathon.

70

Sprinter
(Service Discovery)

• Responsible for clustering tasks 
Uses Partisan to cluster all nodes and ensure connected
overlay network: reads information from Marathon.

• Node local 
Operates at each node and is responsible for taking
actions to ensure connected graph: required for
probabilistic protocols.

70

Sprinter
(Service Discovery)

• Responsible for clustering tasks 
Uses Partisan to cluster all nodes and ensure connected
overlay network: reads information from Marathon.

• Node local 
Operates at each node and is responsible for taking
actions to ensure connected graph: required for
probabilistic protocols.

• Membership mode specific 
Knows, based on the membership mode, how to properly
cluster nodes and enforces proper join behaviour.

70

Debugging Sprinter
• S3 archival 

Nodes periodically snapshot their membership view for analysis.

71

Debugging Sprinter
• S3 archival 

Nodes periodically snapshot their membership view for analysis.

• Elected node (or group) analyses  
Periodically analyses the information in S3 for the following:

71

Debugging Sprinter
• S3 archival 

Nodes periodically snapshot their membership view for analysis.

• Elected node (or group) analyses  
Periodically analyses the information in S3 for the following:

• Isolated node detection  
Identifies isolated nodes and takes corrective measures to repair the
overlay.

71

Debugging Sprinter
• S3 archival 

Nodes periodically snapshot their membership view for analysis.

• Elected node (or group) analyses  
Periodically analyses the information in S3 for the following:

• Isolated node detection  
Identifies isolated nodes and takes corrective measures to repair the
overlay.

• Verifies symmetric relationship  
Ensures that if a node knows about another node, the relationship is
symmetric: prevents I know you, but you don’t know me.

71

Debugging Sprinter
• S3 archival 

Nodes periodically snapshot their membership view for analysis.

• Elected node (or group) analyses  
Periodically analyses the information in S3 for the following:

• Isolated node detection  
Identifies isolated nodes and takes corrective measures to repair the
overlay.

• Verifies symmetric relationship  
Ensures that if a node knows about another node, the relationship is
symmetric: prevents I know you, but you don’t know me.

• Periodic alerting 
Alerts regarding disconnected graphs so external measures can be
taken, if necessary.

71

Evaluation
Next Evaluation

72

Evaluation Strategy
• Deployment and runtime configuration 

Ability to deploy a cluster of node and configure simulations at runtime.

73

Evaluation Strategy
• Deployment and runtime configuration 

Ability to deploy a cluster of node and configure simulations at runtime.

• Each simulation:

73

Evaluation Strategy
• Deployment and runtime configuration 

Ability to deploy a cluster of node and configure simulations at runtime.

• Each simulation:

• Different application scenario  
Uniquely execute a different application scenario at runtime based on runtime
configuration.

73

Evaluation Strategy
• Deployment and runtime configuration 

Ability to deploy a cluster of node and configure simulations at runtime.

• Each simulation:

• Different application scenario  
Uniquely execute a different application scenario at runtime based on runtime
configuration.

• Result aggregation  
Aggregate results at end of execution and archive these results.

73

Evaluation Strategy
• Deployment and runtime configuration 

Ability to deploy a cluster of node and configure simulations at runtime.

• Each simulation:

• Different application scenario  
Uniquely execute a different application scenario at runtime based on runtime
configuration.

• Result aggregation  
Aggregate results at end of execution and archive these results.

• Plot generation 
Automatically generate plots for the execution and aggregate the results of
multiple executions.

73

Evaluation Strategy
• Deployment and runtime configuration 

Ability to deploy a cluster of node and configure simulations at runtime.

• Each simulation:

• Different application scenario  
Uniquely execute a different application scenario at runtime based on runtime
configuration.

• Result aggregation  
Aggregate results at end of execution and archive these results.

• Plot generation 
Automatically generate plots for the execution and aggregate the results of
multiple executions.

• Minimal coordination  
Work must be performed with minimal coordination, as a single orchestrator is a
scalability bottleneck for large applications.

73

Completion Detection
• “Convergence Structure” 

Uninstrumented CRDT of grow-only sets containing counters that each node
manipulates.

74

Completion Detection
• “Convergence Structure” 

Uninstrumented CRDT of grow-only sets containing counters that each node
manipulates.

• Simulates a workflow 
Nodes use this operation to simulate a lock-stop workflow for the experiment.

74

Completion Detection
• “Convergence Structure” 

Uninstrumented CRDT of grow-only sets containing counters that each node
manipulates.

• Simulates a workflow 
Nodes use this operation to simulate a lock-stop workflow for the experiment.

• Event Generation 
Event generation toggles a boolean for the node to show completion.

74

Completion Detection
• “Convergence Structure” 

Uninstrumented CRDT of grow-only sets containing counters that each node
manipulates.

• Simulates a workflow 
Nodes use this operation to simulate a lock-stop workflow for the experiment.

• Event Generation 
Event generation toggles a boolean for the node to show completion.

• Log Aggregation  
Completion triggers log aggregation.

74

Completion Detection
• “Convergence Structure” 

Uninstrumented CRDT of grow-only sets containing counters that each node
manipulates.

• Simulates a workflow 
Nodes use this operation to simulate a lock-stop workflow for the experiment.

• Event Generation 
Event generation toggles a boolean for the node to show completion.

• Log Aggregation  
Completion triggers log aggregation.

• Shutdown 
Upon log aggregation completion, nodes shutdown.

74

Completion Detection
• “Convergence Structure” 

Uninstrumented CRDT of grow-only sets containing counters that each node
manipulates.

• Simulates a workflow 
Nodes use this operation to simulate a lock-stop workflow for the experiment.

• Event Generation 
Event generation toggles a boolean for the node to show completion.

• Log Aggregation  
Completion triggers log aggregation.

• Shutdown 
Upon log aggregation completion, nodes shutdown.

• External monitoring 
When events complete execution, nodes automatically begin the next experiment.

74

Results
Next Evaluation

75

Results Lasp
• Single node orchestration: bad 

Not possible once you exceed a few nodes:
message queues, memory, delays.

76

Results Lasp
• Single node orchestration: bad 

Not possible once you exceed a few nodes:
message queues, memory, delays.

• Partial Views 
Required: rely on transitive dissemination of
information and partial network knowledge.

76

Results Lasp
• Single node orchestration: bad 

Not possible once you exceed a few nodes:
message queues, memory, delays.

• Partial Views 
Required: rely on transitive dissemination of
information and partial network knowledge.

• Results 
Reduced Lasp memory footprint to 75MB;
larger in practice for debugging.

76

Results Partisan
• Fast churn isolates nodes 

Need a repair mechanism: random promotion of isolated
nodes; mainly issues of symmetry.

77

Results Partisan
• Fast churn isolates nodes 

Need a repair mechanism: random promotion of isolated
nodes; mainly issues of symmetry.

• FIFO across connections 
Not per connection, but protocol assumes across all
connections leading to false disconnects.

77

Results Partisan
• Fast churn isolates nodes 

Need a repair mechanism: random promotion of isolated
nodes; mainly issues of symmetry.

• FIFO across connections 
Not per connection, but protocol assumes across all
connections leading to false disconnects.

• Unrealistic system model 
You need per message acknowledgements for safety.

77

Results Partisan
• Fast churn isolates nodes 

Need a repair mechanism: random promotion of isolated
nodes; mainly issues of symmetry.

• FIFO across connections 
Not per connection, but protocol assumes across all
connections leading to false disconnects.

• Unrealistic system model 
You need per message acknowledgements for safety.

• Pluggable protocol helps debugging 
Being able to switch to full membership or client-server
assists in debugging protocol vs. application problems.

77

Latest Results
• Reproducibility at 300 nodes for full applications 

Connectivity, but transient partitions and isolated
nodes at 500 - 1000 nodes (across 140 instances.)

78

Latest Results
• Reproducibility at 300 nodes for full applications 

Connectivity, but transient partitions and isolated
nodes at 500 - 1000 nodes (across 140 instances.)

• Limited financially and by Amazon 
Harder to run larger evaluations because we’re
limited financially (as a university) and because of
Amazon limits.

78

Latest Results
• Reproducibility at 300 nodes for full applications 

Connectivity, but transient partitions and isolated
nodes at 500 - 1000 nodes (across 140 instances.)

• Limited financially and by Amazon 
Harder to run larger evaluations because we’re
limited financially (as a university) and because of
Amazon limits.

• Mean state reduction per client 
Around 100x improvement from our PaPoC 2016
initial evaluation results.

78

Plat à emporter
• Visualizations are important! 

Graph performance, visualize your cluster: all of these things lead to
easier debugging.

79

Plat à emporter
• Visualizations are important! 

Graph performance, visualize your cluster: all of these things lead to
easier debugging.

• Control changes 
No Lasp PR accepted without divergence, state transmission, and
overhead graphs.

79

Plat à emporter
• Visualizations are important! 

Graph performance, visualize your cluster: all of these things lead to
easier debugging.

• Control changes 
No Lasp PR accepted without divergence, state transmission, and
overhead graphs.

• Automation 
Developers use graphs when they are easy to make: lower the difficulty
for generation and understand how changes alter system behaviour.

79

Plat à emporter
• Visualizations are important! 

Graph performance, visualize your cluster: all of these things lead to
easier debugging.

• Control changes 
No Lasp PR accepted without divergence, state transmission, and
overhead graphs.

• Automation 
Developers use graphs when they are easy to make: lower the difficulty
for generation and understand how changes alter system behaviour.

• Make work easily testable 
When you test locally and deploy globally, you need to make things
easy to test, deploy and evaluate (for good science, I say!)

79

80

Christopher Meiklejohn

@cmeik
http://www.lasp-lang.org
http://github.com/lasp-lang

Thanks!

http://www.lasp-lang.org
http://github.com/lasp-lang

