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Synchronization
• To enforce an order  

Makes programming easier

• Eliminate accidental nondeterminism 
Prevent race conditions

• Techniques 
Locks, mutexes, semaphores, monitors, 
etc.

6



Difficult Cases
• “Internet of Things”,  

Low power, limited memory and 
connectivity 

7



Difficult Cases
• “Internet of Things”,  

Low power, limited memory and 
connectivity 

• Mobile Gaming 
Offline operation with replicated, shared 
state
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Weak Synchronization
• Can we achieve anything without synchronization? 

Not really.

• Strong Eventual Consistency (SEC) 
“Replicas that deliver the same updates have equivalent state”

• Primary requirement 
Eventual replica-to-replica communication

• Order insensitive! (Commutativity) 

• Duplicate insensitive! (Idempotent)
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How can we succeed with  
Strong Eventual 
Consistency?
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1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations 
monotonically)


2. Retain the properties of functional 
programming 
(ex. confluence, referential transparency over composition) 

3. Distributed, and fault-tolerant runtime 
(ex. replication, membership, dissemination)
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Convergent Objects 
Conflict-Free  
Replicated Data Types
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Conflict-Free  
Replicated Data Types

• Many types exist with different properties 
Sets, counters, registers, flags, maps, 
graphs

• Strong Eventual Consistency 
Instances satisfy SEC property per-object
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Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations 
monotonically)


2. Retain the properties of functional 
programming 
(ex. confluence, referential transparency over composition) 

3. Distributed, and fault-tolerant runtime 
(ex. replication, membership, dissemination)

23



Convergent Programs 
Lattice Processing
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Lattice Processing (Lasp)
• Distributed dataflow 

Declarative, functional programming model 

• Convergent data structures 
Primary data abstraction is the CRDT

• Enables composition 
Provides functional composition of CRDTs 
that preserves the SEC property
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Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations 
monotonically)


2. Retain the properties of functional 
programming 
(ex. confluence, referential transparency over composition) 

3. Distributed, and fault-tolerant runtime 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Distributed Runtime 
Selective Hearing
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Selective Hearing
• Epidemic broadcast based runtime system 

Provide a runtime system that can scale to large numbers of 
nodes, that is resilient to failures and provides efficient execution

• Well-matched to Lattice Processing (Lasp)

• Epidemic broadcast mechanisms provide weak ordering but 
are resilient and efficient

• Lasp’s programming model is tolerant to message re-ordering, 
disconnections, and node failures

• “Selective Receive” 
Nodes selectively receive and process messages based on 
interest.
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Layered Approach
• Membership 

Configurable membership protocol which can operate 
in a client-server or peer-to-peer mode

• Broadcast (via Gossip, Tree, etc.) 
Efficient dissemination of both program state and 
application state via gossip, broadcast tree, or hybrid 
mode

• Auto-discovery 
Integration with Mesos, auto-discovery of Lasp nodes 
for ease of configurability

34
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Membership Overlay 

Broadcast Overlay

Mobile Phone

Distributed Hash Table

Lasp Execution



Programming SEC
1. Eliminate accidental nondeterminism 

(ex. deterministic, modeling non-monotonic operations 
monotonically)


2. Retain the properties of functional 
programming 
(ex. confluence, referential transparency over composition) 

3. Distributed, and fault-tolerant runtime 
(ex. replication, membership, dissemination)
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What can we build? 
Advertisement Counter
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Advertisement Counter
• Mobile game platform selling 

advertisement space 
Advertisements are paid according to a 
minimum number of impressions 
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Advertisement Counter
• Mobile game platform selling 

advertisement space 
Advertisements are paid according to a 
minimum number of impressions 

• Clients will go offline 
Clients have limited connectivity and the 
system still needs to make progress while 
clients are offline

43
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Evaluation 
Initial Evaluation
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Background 
Distributed Erlang

• Transparent distribution 
Built-in, provided by Erlang/BEAM, cross-node 
message passing.

• Known scalability limitations 
Analyzed in academic in various publications.

• Single connection 
Head of line blocking.

• Full membership 
All-to-all failure detection with heartbeats and 
timeouts.
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Background 
Erlang Port Mapper Daemon
• Operates on a known port 

Similar to Solaris sunrpc style portmap: 
known port for mapping to dynamic port-
based services.

• Bridged networking 
Problematic for cluster in bridged 
networking with dynamic port allocation.
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Experiment Design
• Single application 

Advertisement counter example from Rovio Entertainment.

• Runtime configuration 
Application controlled through runtime environment 
variables.

• Membership 
Full membership with Distributed Erlang via EPMD.

• Dissemination 
State-based object dissemination through anti-entropy 
protocol (fanout-based, PARC-style.)
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Experiment Orchestration
• Docker and Mesos with Marathon 

Used for deployment of both EPMD and Lasp application.

• Single EPMD instance per slave 
Controlled through the use of host networking and 
HOSTNAME: UNIQUE constraints in Mesos.

• Lasp 
Local execution using host networking: connects to local 
EPMD.

• Service Discovery 
Service discovery facilitated through clustering EPMD 
instances through Sprinter.
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Ideal Experiment
• Local Deployment 

High thread concurrency when operating 
with lower node count.

• Cloud Deployment 
Low thread concurrency when operating 
with a higher node count.
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Initial Evaluation
• Moved to DC/OS exclusively 

Environments too different: too much work needed to be adapted 
for things to work correctly.

• Single orchestration task 
Dispatched events, controlled when to start and stop the 
evaluation and performed log aggregation.

• Bottleneck 
Events immediately dispatched: would require blocking for 
processing acknowledgment.

• Unrealistic 
Events do not queue up all at once for processing by the client.
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Lasp Difficulties
• Too expensive 

2.0 CPU and 2048 MiB of memory.

• Weeks spent adding instrumentation 
Process level, VM level, Erlang Observer instrumentation to 
identify heavy CPU and memory processes.

• Dissemination too expensive 
1000 threads to a single dissemination process (one Mesos 
task) leads to backed up message queues and memory leaks.

• Unrealistic 
Two different dissemination mechanisms: thread to thread and 
node to node: one is synthetic.
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EPMD Difficulties
• Nodes become unregistered 

Nodes randomly unregistered with EPMD during 
execution.

• Lost connection 
EPMD loses connections with nodes for some 
arbitrary reason.

• EPMD task restarted by Mesos 
Restarted for an unknown reason, which leads 
Lasp instances to restart in their own container.
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Overhead Difficulties
• Too much state 

Client would ship around 5 GiB of state within 
90 seconds.

• Delta dissemination 
Delta dissemination only provides around a 30% 
decrease in state transmission.

• Unbounded queues 
Message buffers would lead to VMs crashing 
because of large memory consumption.

63



Evaluation 
Rearchitecture

64



Ditch Distributed Erlang
• Pluggable membership service 

Build pluggable membership service with abstract 
interface initially on EPMD and later migrate after tested.

65



Ditch Distributed Erlang
• Pluggable membership service 

Build pluggable membership service with abstract 
interface initially on EPMD and later migrate after tested.

• Adapt Lasp and Broadcast layer 
Integrate pluggable membership service throughout the 
stack and librate existing libraries from distributed 
Erlang.

65



Ditch Distributed Erlang
• Pluggable membership service 

Build pluggable membership service with abstract 
interface initially on EPMD and later migrate after tested.

• Adapt Lasp and Broadcast layer 
Integrate pluggable membership service throughout the 
stack and librate existing libraries from distributed 
Erlang.

• Build service discovery mechanism 
Mechanize node discovery outside of EPMD based on 
new membership service.

65



Partisan  
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

66



Partisan  
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

66



Partisan  
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

66



Partisan  
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

• Full membership via TCP.

66



Partisan  
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

• Full membership via TCP.

• Client-server membership via TCP.

66



Partisan  
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

• Full membership via TCP.

• Client-server membership via TCP.

• Peer-to-peer membership via TCP (with HyParView)

66



Partisan  
(Membership Layer)

• Pluggable protocol membership layer 
Allow runtime configuration of protocols used for cluster membership.

• Several protocol implementations:

• Full membership via EPMD.

• Full membership via TCP.

• Client-server membership via TCP.

• Peer-to-peer membership via TCP (with HyParView)

• Visualization 
Provide a force-directed graph-based visualization engine for cluster 
debugging in real-time.
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Partisan  
(Full via EPMD or TCP)

• Full membership 
Nodes have full visibility into the entire graph.

• Failure detection 
Performed by peer-to-peer heartbeat messages with a 
timeout.

• Limited scalability 
Heartbeat interval increases when node count 
increases leading to false or delayed detection.

• Testing 
Used to create the initial test suite for Partisan.
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Partisan  
(Client-Server Model)

• Client-server membership 
Server has all peers in the system as peers; client has 
only the server as a peer.

• Failure detection 
Nodes heartbeat with timeout all peers they are aware of.

• Limited scalability 
Single point of failure: server; with limited scalability on 
visibility.

• Testing 
Used for baseline evaluations as “reference” architecture.
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Partisan  
(HyParView, default)

• Partial view protocol 
Two views: active (fixed) and passive (log n); passive 
used for failure replacement with active view.

• Failure detection 
Performed by monitoring active TCP connections to 
peers with keep-alive enabled.

• Very scalable (10k+ nodes during academic 
evaluation) 
However, probabilistic; potentially leads to isolated 
nodes during churn.
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overlay network: reads information from Marathon.
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Sprinter 
(Service Discovery)

• Responsible for clustering tasks 
Uses Partisan to cluster all nodes and ensure connected 
overlay network: reads information from Marathon.

• Node local 
Operates at each node and is responsible for taking 
actions to ensure connected graph: required for 
probabilistic protocols.

• Membership mode specific 
Knows, based on the membership mode, how to properly 
cluster nodes and enforces proper join behaviour.
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Debugging Sprinter
• S3 archival 

Nodes periodically snapshot their membership view for analysis.

• Elected node (or group) analyses  
Periodically analyses the information in S3 for the following:

• Isolated node detection  
Identifies isolated nodes and takes corrective measures to repair the 
overlay.

• Verifies symmetric relationship  
Ensures that if a node knows about another node, the relationship is 
symmetric: prevents I know you, but you don’t know me.

• Periodic alerting 
Alerts regarding disconnected graphs so external measures can be 
taken, if necessary.
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Evaluation Strategy
• Deployment and runtime configuration 

Ability to deploy a cluster of node and configure simulations at runtime.

• Each simulation: 

• Different application scenario  
Uniquely execute a different application scenario at runtime based on runtime 
configuration.

• Result aggregation  
Aggregate results at end of execution and archive these results.

• Plot generation 
Automatically generate plots for the execution and aggregate the results of 
multiple executions.

• Minimal coordination  
Work must be performed with minimal coordination, as a single orchestrator is a 
scalability bottleneck for large applications.
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Completion Detection
• “Convergence Structure” 

Uninstrumented CRDT of grow-only sets containing counters that each node 
manipulates.

• Simulates a workflow 
Nodes use this operation to simulate a lock-stop workflow for the experiment.

• Event Generation 
Event generation toggles a boolean for the node to show completion.

• Log Aggregation  
Completion triggers log aggregation.

• Shutdown 
Upon log aggregation completion, nodes shutdown.

• External monitoring 
When events complete execution, nodes automatically begin the next experiment.
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Next Evaluation
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Results Lasp
• Single node orchestration: bad 

Not possible once you exceed a few nodes: 
message queues, memory, delays.

• Partial Views 
Required: rely on transitive dissemination of 
information and partial network knowledge.

• Results 
Reduced Lasp memory footprint to 75MB; 
larger in practice for debugging.
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Results Partisan
• Fast churn isolates nodes 

Need a repair mechanism: random promotion of isolated 
nodes; mainly issues of symmetry.

• FIFO across connections 
Not per connection, but protocol assumes across all 
connections leading to false disconnects.

• Unrealistic system model 
You need per message acknowledgements for safety.

• Pluggable protocol helps debugging 
Being able to switch to full membership or client-server 
assists in debugging protocol vs. application problems.
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Latest Results
• Reproducibility at 300 nodes for full applications 

Connectivity, but transient partitions and isolated 
nodes at 500 - 1000 nodes (across 140 instances.)

• Limited financially and by Amazon 
Harder to run larger evaluations because we’re 
limited financially (as a university) and because of 
Amazon limits.

• Mean state reduction per client 
Around 100x improvement from our PaPoC 2016 
initial evaluation results.
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Plat à emporter
• Visualizations are important! 

Graph performance, visualize your cluster: all of these things lead to 
easier debugging.

• Control changes 
No Lasp PR accepted without divergence, state transmission, and 
overhead graphs.

• Automation 
Developers use graphs when they are easy to make: lower the difficulty 
for generation and understand how changes alter system behaviour. 

• Make work easily testable 
When you test locally and deploy globally, you need to make things 
easy to test, deploy and evaluate (for good science, I say!)
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Christopher Meiklejohn

@cmeik 
http://www.lasp-lang.org 
http://github.com/lasp-lang

Thanks!

http://www.lasp-lang.org
http://github.com/lasp-lang

