
From NoSQL to
Mo’SQL

Gordon Guthrie

Lots of people have worked on Riak TS
Andrei Zavada
Andy Till
Bill Soudan
Brett Hazen
Brian McClain
Bryce Kerley
Derek Somogyi
Erik Johnson

Erik Leitch
Heather McKelvey
John Daily
Lauren Rother
Paul Hagan
Pavel Hardak
Seema Jethani

SQL and
NoSQL?

a match made in hell?

select key, value from bucket where key=‘ModelT’;

The ring itself is a pain right up yer bahooky in slides

Cate Alice Alice Alice
Bob

Bob Bob Cate Cate

1 2 3 4 5 6 7 8 9 10 11 12

Key = Alice

Hash
Fn

Key = BobKey = Cate

The ring is logical on physical nodes

Cate Alice Alice Alice
Bob

Bob Bob Cate Cate

1 2 3 4 5 6 7 8 9 10 11 12

Server 1 Server 2 Server 3

This give you two query modes
1 2 3 4 5 6 7 8 9 10 11 12

I have a key I don’t have a key

And its not just about the travelling
1 2 3 4 5 6 7 8 9 10 11 12

I don’t have a key

In summary

• You can talk to 2 servers if you
have a key

• You must talk to all servers if
you don’t

Lets see how TS works

8:01
8:03
8:04

8:01
8:03
8:04

8:01
8:03
8:04
9:01
9:09

9:01
9:09

9:01
9:09

7:03
7:07
7:09

7:03
7:07
7:09

7:03
7:07
7:09

1 2 3 4 5 6 7 8 9 10 11 12

Key = (Alice, quantum(Time, 10, ’s'))

Hash
Fn

Different access patterns

• You can talk to 2 servers if you
want to query the data across 1
quantum

• Add another 2 for 2 quanta
• eventually must talk to all

servers

There are trade-offs

• You can make the quanta
bigger which means less trips
to read more data

• but your write pattern gets
lumpier with higher risk of hot
spots

Can we
improve that?

We have 2i indices
1 2 3 4 5 6 7 8 9 10 11 12

Key

Index

To get a list of keys that match an index you visit 1/3
of nodes +1 and make an index read

You’ve seen the movie

The SQL

Why SQL

•Everybody knows it/low
barrier to entry

•Good tooling
• Its a declarative language,
but extendable

High level architecture

Riak KV

Riak Core

leveldb leveldb leveldb

Riak QL

KV stores are know-nothing wrt values
CREATE TABLE GeoCheckin

(
 id SINT64 NOT NULL,

 time TIMESTAMP NOT NULL,
 region VARCHAR NOT NULL,

 state VARCHAR NOT NULL,
 weather VARCHAR NOT NULL,

 temperature DOUBLE,
 PRIMARY KEY (

 (id, QUANTUM(time, 15, 'm')),
 id, time

)
)

Erlang data
structure
(a record)

leex/yecc

riak core
metadata

distribute round
cluster with
riak_core

load Erlang ddl
helper module

as .beam

merl

The query system is distributed

Co-ordinator maybe remote
vnode

maybe remote
vnode

Init

new query

get data

get data

read data

process
read data

process

process
reply

Quite complex query validation process

 |
 DDL DDL DDL Function
 Helper | Helper Helper Type Sigs
 + + + +
 | | | +-----+-----+
 | | |
 | | | |
 v v v
Declatory Are fields YES Is valid TS YES Is query YES To Query
SQL Select +----> in table? +----------> WHERE clause? +-----> typesafe? +-----> Rewriter
Record + + +
 NO | NO | NO |
 | | | |
 v v v
 Error | Error Error

 |

 Lexer/Parser - QL | Query Compiler KV

Unroll all the SQL
SELECT AVG(temp) FROM mytimeseries WHERE family = ‘myfamily' AND series = ‘myseries'
AND timestamp > 1233 AND timestamp < 6789 AND temp > 18;

<----Erlang Coordinator-----> <-----LeveldDB C++ Code----->
 <---Network--->
+ FROM <-----------------------+ + FROM mytable on vnode X
| | |
| SELECT SUM(STemp)/SUM(NoTemp) | | SELECT SUM(temp) AS STemp, COUNT(temp) AS NoTemp
| | Chunk1 |
| GROUP BY [] +--------+ GROUP BY []
| | |
| ORDER BY [] | | ORDER BY []
| | |
+ WHERE [] | + WHERE + start_key = {myfamily, myseries, 1233}
 | | end_key = {myfamily, myseries, 4000}
 | + temp > 18
 |
 | + FROM mytable on vnode Y
 | |
 | | SELECT SUM(temp) AS STemp, COUNT(temp) AS NoTemp
 | Chunk2 |
 +--------+ GROUP BY []
 |
 | ORDER BY []
 |
 + WHERE + start_key = {myfamily, myseries, 4001}
 | end_key = {myfamily, myseries, 6789}
 + temp > 18

declarative SQL
(decorated with execution hints)

Query rewriting in a nutshell

Query Plan
(executable fragments)

transform syntax

preserve semantics

Schematic SQL Operations

 Table In Shell Data On Disk

+-------+-------+ +-------+-------+-------+
| ColX | ColY | | Col1 | Col2 | Col3 |
| Type1 | Type2 | | Type1 | Type2 | Type3 |
+-------+-------+ SQL Query +-------+-------+-------+
 <--------------+
+-------+-------+ +-------+-------+-------+
| Val1X | Val1Y | | Val1a | Val1b | Val1c |
+---------------+ +-----------------------+
| Val2X | Val2Y | | Val2a | Val2b | Val2c |
+-------+-------+ +-----------------------+
 | Val3a | Val3b | Val3c |
 +-------+-------+-------+

All the fragments meet this pattern - row ops

+-------+-------+-------+ +-------+-------+-------+
| Col1 | Col2 | Col3 | | Col1 | Col2 | Col3 |
| Type1 | Type2 | Type3 | | Type1 | Type2 | Type3 |
+-------+-------+-------+ Operation +-------+-------+-------+
 <-------------+
+-------+-------+-------+ +-------+-------+-------+
| Val1a | Val1b | Val1c | WHERE | Val1a | Val1b | Val1c |
+-----------------------+ GROUP BY +-----------------------+
| Val3a | Val3b | Val3c | ORDER BY | Val2a | Val2b | Val2c |
+-----------------------+ LIMIT +-----------------------+
| Val6a | Val6b | Val6c | DISTINCT | Val3a | Val3b | Val3c |
+-----------------------+ HAVING +-----------------------+
| Val5a | Val5b | Val5c | | Val4a | Val4b | Val4c |
+-------+-------+-------+ +-----------------------+
 | Val5a | Val5b | Val5c |
 +-----------------------+
 | Val6a | Val6b | Val6c |
 +-------+-------+-------+

Row and column operations

+-------+-------+ +-------+-------+-------+
| ColX | ColY | | Col1 | Col2 | Col3 |
| Type1 | Type2 | | Type1 | Type2 | Type3 |
+-------+-------+ Operation +-------+-------+-------+
 <-------------+
+-------+-------+ +-------+-------+-------+
| Val1X | Val1Y | SELECT | Val1a | Val1b | Val1c |
+---------------+ +-----------------------+
| Val2X | Val2Y | | Val2a | Val2b | Val2c |
+-------+-------+ +-----------------------+
 | Val3a | Val3b | Val3c |
 +-------+-------+-------+

Column Name Vector Ops

+-------+-------+-------+ +-------+-------+-------+
| ColX | ColY | ColZ | | Col1 | Col2 | Col3 |
| Type1 | Type2 | Type3 | | Type1 | Type2 | Type3 |
+-------+-------+-------+ Operation +-------+-------+-------+
 <-------------+
+-------+-------+-------+ +-------+-------+-------+
| Val1a | Val1b | Val1c | AS | Val1a | Val1b | Val1c |
+-----------------------+ +-----------------------+
| Val2a | Val2b | Val2c | | Val2a | Val2b | Val2c |
+-----------------------+ +-----------------------+
| Val3a | Val3b | Val3c | | Val3a | Val3b | Val3c |
+-----------------------+ +-----------------------+
| Val4a | Val4b | Val4c | | Val4a | Val4b | Val4c |
+-------+-------+-------+ +-----------------------+

Executable Fragments

{where, [
 {and_,
 {'=', <<"sequence_number">>, {integer, 2321}},
 {'=', <<"time">>, {integer, 1400497861762723}}
 }
]}

YASL’s all the way down

How much SQL?
• SELECT
• WHERE
• GROUP BY
• ORDER BY/LIMIT is being worked on
• functions:

–AVG/MEAN
–MAX
–MIN
–SUM
–COUNT
–STDDEV/STDDEV_SAMP
–STDDEV_POP

What does ‘decorated with execution hints mean’?

SELECT * FROM mytable;
SELECT * FROM mytable LIMIT 1000;
SELECT * FROM mytable WITH frobulate=on;

Standard SQL
works in Tools

Extensions
Set as table defaults

What does the future hold?

Riak has other sorts of co-located data
• CRDT sets look like colocation

– 100,000 elements in a CRDT set
– written to a vnode under a key

• performance issues
– monolithic object
– read 100,000 element set from disk
– operate on it
– write it back to disk

Enter big sets!

How would that work?

 Table In Shell Data On Disk

+-------+-------+ +-------+-------+-------+
| ColX | ColY | | Col1 | Col2 | Col3 |
| Type1 | Type2 | | Type1 | Type2 | Type3 |
+-------+-------+ SQL Query +-------+-------+-------+
 <--------------+
+-------+-------+ +-------+-------+-------+
| Val1X | Val1Y | | Val1a | Val1b | Val1c |
+---------------+ +-----------------------+
| Val2X | Val2Y | | Val2a | Val2b | Val2c |
+-------+-------+ +-----------------------+
 | Val3a | Val3b | Val3c |
 +-------+-------+-------+

Table Schemas

Set of Rows

Maps

Set of Maps

High level architecture

Big Sets/Big Maps

Riak Core

leveldb leveldb leveldb

Riak QL

…and because maps are recursive and can contain sets which can be maps

•we have prototyped
subsets of relational
queries
–left or inner joins

Much excites!

You still have the 2 query paths…

Talk to all
servers

Talk to 2
servers

Can we ‘steal’ some of the causality information from Delta ops and
use that to build single point access eventually consistent indices?

Dunno!

Fin

