
Into the Core
Squeezing Haskell into

nine constructors
Simon Peyton Jones
Microsoft Research

September 2016

CACM Jan 2016

GHC
Haskell

A rich
language

GHC Haskell
A very complicated and

ill-defined language, with
a long user manual, that

almost no one
understands completely

GHC
is

big
and
old

GHC
is

big
and
old

Question

how to stay sane?

How GHC works

Haskell
Massive language

Hundreds of pages
of user manual

Syntax has dozens
of data types

100+ constructors

Core
3 types,

15 constructors

Rest of GHC

Source language Typed intermediate
language

Ty
pe

ch
ec

k

D
es

ug
ar

A typed
intermediate
language

Haskell Core (the typed IL)
Big Small
Implicitly typed Explicitly typed
Binders typically
un-annotated
 \x. x && y

Every binder is
type-annotated
 \(x:Bool). x && y

Type inference
(complex, slow)

Type checking
(simple, fast)

Complicated to specify
just which programs will
type-check

Very simple to specify just
which programs are
type-correct

Ad-hoc restrictions to
make inference feasible

Very expressive indeed;
simple, uniform

A typed
intermediate
language

Haskell Core (the typed IL)
Big Small
Implicitly typed Explicitly typed
Binders typically
un-annotated
 \x. x && y

Every binder is
type-annotated
 \(x:Bool). x && y

Type inference
(complex, slow)

Type checking
(simple, fast)

Complicated to specify
just which programs will
type-check

Very simple to specify just
which programs are
type-correct

Ad-hoc restrictions to
make inference feasible

Very expressive indeed;
simple, uniform

A typed intermediate language: why?
1. Small IL means that analysis, optimisation, and code generation,

handle only a small language.

2. Type checker (“Lint”) for Core is a very powerful internal consistency
check on most of the compiler
◼ Desugarer must produce well-typed Core
◼ Optimisation passes must transform well-typed Core to well-typed Core

3. Design of Core is a powerful sanity check on crazy type-system
extensions to source language. If you can desugar it into Core, it
must be sound; if not, think again.

A typed intermediate language: why?
1. Small IL means that analysis, optimisation, and code generation,

handle only a small language.

2. Type checker (“Lint”) for Core is a very powerful internal consistency
check on most of the compiler
◼ Desugarer must produce well-typed Core
◼ Optimisation passes must transform well-typed Core to well-typed Core

3. Design of Core is a powerful sanity check on crazy type-system
extensions to source language. If you can desugar it into Core, it
must be sound; if not, think again.

GHC is the only production

compiler that remorselessly

pursues this idea of a

strongly-typed intermediate

language

The design of Core is probably

GHC’s single most substantial

technical achievement

Why should you care about Core?

◼ Because it is jolly interesting

◼ Because much of it would work for Erlang

◼ Because it shows theory and practice working together

WHAT SHOULD CORE
BE LIKE?

What should Core be like?
◼ Start with lambda calculus. From “Lambda the Ultimate X”

papers we know that lambda is super-powerful.
◼ But we need a TYPED lambda calculus
◼ Idea:

◼ start with lambda calculus
◼ sprinkle type annotations

◼ But:
◼ Don’t want to be buried in type annotations
◼ Types change as you optimise

Example
compose :: (b->c) -> (a->b) -> a -> c
compose = λ(f:b->c). λ(g:a->b). λ(x:a).

 let tmp:b = g x
 in f tmp

◼ Idea: put type annotations on each binder
(lambda, let), but nowhere else

◼ But: where are ‘a’ ‘b’ ‘c’ bound?

◼ And: unstable under transformation...

Example
compose :: (b->c) -> (a->b) -> a -> c
compose = λf:b->c. λg:a->b. λx:a.

 let tmp:b = g x
 in f tmp

◼ Now the type annotations are wrong

◼ Solution: learn from Girard and Reynolds!

compose isPos neg
= (inline compose:

 f=isPos, g=neg)
 λx:a. let tmp:b = neg x

 in isPos tmp

neg :: Int -> Int
isPos :: Int -> Bool

System F
compose :: ∀abc. (b->c) -> (a->b) -> a -> c
compose = Λabc. λf:b->c. λg:a->b. λx:a.

 let tmp:b = g x
 in f tmp

◼ Idea: an explicit (big) lambda binds type variables

System F

compose @Int @Int @Bool isPos neg
= (inline compose:

a=Int, b=Int, c=Bool, f=isPos, g=neg)
 λx:Int. let tmp:Int = neg x

 in isPos tmp

compose :: ∀abc. (b->c) -> (a->b) -> a -> c
compose = Λabc. λf:b->c. λg:a->b. λx:a.

 let tmp:b = g x
 in f tmp

◼ Big lambdas are applied to types,
just as little lambdas are applied to values

◼ Now the types stay correct!

The real
“System
F”

◼ In GHC, the IL is like what we’ve seen, plus:
◼ Algebraic data type declarations

◼ Data constructors in terms

◼ Case expressions

◼ Let expressions

data Maybe a = Nothing | Just a

λx:Int. Just (Just x)

case x of { Nothing -> 0; Just x -> x+1 }

let x:Int = 4 in x+x

Core: GHC’s
intermediate
language

data Expr
 = Var Var
 | Lit Literal
 | App Expr Expr
 | Lam Var Expr -- Both term and type lambda
 | Let Bind Expr
 | Case Expr Var Type [(AltCon, [Var], Expr)]
 | Type Type -- Used for type application

data Var = Id Name Type -- Term variable
 | TyVar Name Kind -- Type/kind variable

type Kind = Type
data Type = TyVarTy Var
 | LitTy TyLit
 | AppTy Type Type
 | TyConApp TyCon [Type]
 | FunTy Type Type -- Not really necy
 | ForAllTy Var Type

Core: GHC’s
intermediate
language

data Expr
 = Var Var
 | Lit Literal
 | App Expr Expr
 | Lam Var Expr -- Both term and type lambda
 | Let Bind Expr
 | Case Expr Var Type [(AltCon, [Var], Expr)]
 | Type Type -- Used for type application

data Var = Id Name Type -- Term variable
 | TyVar Name Kind -- Type/kind variable

type Kind = Type
data Type = TyVarTy Var
 | LitTy TyLit
 | AppTy Type Type
 | TyConApp TyCon [Type]
 | FunTy Type Type -- Not really necy
 | ForAllTy Var Type

Core: GHC’s
intermediate
language

data Expr
 = Var Var
 | Lit Literal
 | App Expr Expr
 | Lam Var Expr -- Both term and type lambda
 | Let Bind Expr
 | Case Expr Var Type [(AltCon, [Var], Expr)]
 | Type Type -- Used for type application

data Var = Id Name Type -- Term variable
 | TyVar Name Kind -- Type/kind variable

type Kind = Type
data Type = TyVarTy Var
 | LitTy TyLit
 | AppTy Type Type
 | TyConApp TyCon [Type]
 | FunTy Type Type -- Not really necy
 | ForAllTy Var Type

26 years old and still tiny.

 Bravo Girard & Reynolds!

What’s
good
about
System F

◼ In our presentation of System F, each variable
occurrence is annotated with its type.

◼ Hence every term has a unique type

◼ exprType is pure; needs no “Gamma” argument
◼ Sharing of the Var means that the apparent

duplication is not real

exprType :: Expr -> Type
exprType (Var v) = varType v
exprType (Lam v a) = Arrow (varType v) (exprType a)
...more equations...

What’s good about System F?
Type checking
(Lint) is fast
and easy,
because the
rules are
syntax-directe
d |- λr:(Int->Bool). r 4 : (Int -> Bool) -> Bool

r:Int->Bool |- r 4 : Bool

r:Int->Bool |- r : Int -> Bool r:Int->Bool |- 4 : Int

(fabs)

(fapp)

(flit)(fvar)

What’s good about System F?
Type checking
(Lint) is fast
and easy,
because the
rules are
syntax-directe
d |- λr:(Int->Bool). r 4 : (Int -> Bool) -> Bool

r:Int->Bool |- r 4 : Bool

r:Int->Bool |- r : Int -> Bool r:Int->Bool |- 4 : Int

(fabs)

(fapp)

(flit)(fvar)

The syntax of a term encodes its
typing derivation

Story so far

◼ Very small, statically typed language

◼ Robust to transformations (ie if the term is well typed, then
the transformed term is well typed)

◼ Simple, pure exprType

◼ Type checking (Lint) is easy and fast

THE CORE PIPELINE

• The Simplifier
• Inlining
• Rewrite rules
• Beta reduction
• Case of case
• Case of known

constructor
• etc etc etc

• Specialise overloading
• Float out
• Float in
• Demand, cardinality, and

CPR analysis
• Arity analysis
• Call-pattern specialisation

(SpecConstr)

module Foo where
 f :: Int -> Int
 f x = x+1

bash$ ghc -c Foo.hs -ddump-simpl
==================== Tidy Core ====================
Result size of Tidy Core
 = {terms: 7, types: 4, coercions: 0}

Foo.f :: GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=1, Str=DmdType]
Foo.f =
 \ (x_apE :: GHC.Types.Int) ->
 GHC.Num.+ @ GHC.Types.Int
 GHC.Num.$fNumInt
 x_apE (GHC.Types.I# 1)

bash$ ghc -c Foo.hs -dshow-passes
*** Checking old interface for main:Foo:
*** Parser:
*** Renamer/typechecker:
*** Desugar:
Result size of Desugar (after optimization)
 = {terms: 7, types: 4, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 7, types: 4, coercions: 0}
*** Tidy Core:
Result size of Tidy Core = {terms: 7, types: 4, coercions: 0}
*** CorePrep:
Result size of CorePrep = {terms: 9, types: 5, coercions: 0}
*** Stg2Stg:
*** CodeOutput:
*** New CodeGen:

bash$ ghc -c Foo.hs -ddump-simpl -O
==================== Tidy Core ====================
Result size of Tidy Core
 = {terms: 9, types: 5, coercions: 0}

Foo.f :: GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=1, Caf=NoCafRefs,
 Str=DmdType <S,1*U(U)>m,
 Unf=Unf{Src=InlineStable, TopLvl=True,
 Arity=1, Value=True,
 ConLike=True, WorkFree=True, Expandable=True,
 Guidance=ALWAYS_IF(unsat_ok=True,
 boring_ok=False)
 Tmpl= ...]
Foo.f =
 \ (x_arV :: GHC.Types.Int) ->
 case x_arV of _ [Occ=Dead] { GHC.Types.I# x1_aNv ->
 GHC.Types.I# (GHC.Prim.+# x1_aNv 1)
 }

bash$ ghc -c Foo.hs -O -dshow-passes
*** Parser:
*** Renamer/typechecker:
*** Desugar:
Result size of Desugar (after optimization)
 = {terms: 7, types: 4, coercions: 0}
*** Simplifier:
Result size of Simplifier iteration=1
 = {terms: 6, types: 3, coercions: 0}
Result size of Simplifier = {terms: 6, types: 3, coercions: 0}
*** Specialise:
Result size of Specialise = {terms: 6, types: 3, coercions: 0}
*** Float out(FOS {Lam = Just 0, Consts = True, PAPs = False}):
Result size of Float out(FOS {Lam = Just 0,Consts = True,PAPs = False})
 = {terms: 8, types: 4, coercions: 0}
*** Float inwards:
Result size of Float inwards = {terms: 8, types: 4, coercions: 0}
*** Simplifier:
Result size of Simplifier iteration=1
 = {terms: 12, types: 6, coercions: 0}
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Demand analysis:
Result size of Demand analysis = {terms: 9, types: 5, coercions: 0}
*** Worker Wrapper binds:
Result size of Worker Wrapper binds
 = {terms: 9, types: 5, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Float out(FOS {Lam = Just 0, Consts = True, PAPs = True}):
Result size of Float out(FOS {Lam = Just 0,Consts = True, PAPs = True})
 = {terms: 9, types: 5, coercions: 0}
*** Common sub-expression:
Result size of Common sub-expression
 = {terms: 9, types: 5, coercions: 0}
*** Float inwards:
Result size of Float inwards = {terms: 9, types: 5, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Tidy Core:
Result size of Tidy Core = {terms: 9, types: 5, coercions: 0}
*** CorePrep:
Result size of CorePrep = {terms: 12, types: 6, coercions: 0}
*** Stg2Stg:
*** CodeOutput:
*** New CodeGen:

CORE OPTIMISATIONS
A hail of bullets

• The Simplifier
• Inlining
• Rewrite rules
• Beta reduction
• Case of case
• Case of known

constructor
• etc etc etc

• Specialise overloading
• Float out
• Float in
• Demand, cardinality, and

CPR analysis
• Arity analysis
• Call-pattern specialisation

(SpecConstr)

The mighty simplifier

◼ Simplifier performs a raft of local optimisations
• Inlining
• Beta reduction
• Rewrite rules
• Case of known constructor
• Case of case
• etc etc etc

◼ These transformations cascade

LET:
Inlining

◼ Inlining is the key transformation
◼ Replace x by x’s definition

◼ Issues:
◼ May duplicate code <rhs>

How often does ‘x’ occur? How big is <rhs>?
◼ May duplicate work let x = factorial y in …

Is <rhs> a value or not?
◼ Which occurrences to substitute for.

All? Some? None?

let x = <rhs> in …x…x…
===>

let x = <rhs> in …x…<rhs>…

Lots of
heuristics

here

◼ Works even if x’s definition is in another
module, or another package

module Prelude where
 null :: [a] -> Bool
 null [] = True
 null (x:xs) = False

 not :: Bool -> Bool
 not True = False
 not False = True

module X where
 import Prelude
 notNull xs = not (null xs)

Prelude.hi
Gives type signature and

unfolding for null, not

GHC

X.hi

LET:
Inlining

LAMBDA:
Beta
reduction

◼ Beta reduction is easy: make a ‘let’

◼ Note that: beta reduction produces a ‘let’;
now inlining decisions take over again.

◼ Other compilers: inline function call
GHC: inline occurrence of function; then beta
reduce

(\x. e1) e2
===>

let x = e2 in e1

APPLY:
Rewrite
rules

◼ Lots of optimisations of the form
 fun arg1 … argn ==> result

◼ A large number are built-in to GHC;
very easy to extend this list

◼ Simplifier: applies the rules exhaustively

◼ Simple “phase system” to control order of
application. Apply phase-2 rules; then phase-1 rules;
then phase-0 rules.

+# x 0 ==> x

Rewrite
rules

◼ Users can write more RULES

◼ Works across modules

◼ Effectively: extends the compiler with
library-specific optimisation rules!

◼ Compiler does not (cannot) check correctness;
that’s up to the programmer.

{-# RULES
 “foldr/build” forall k z g.
 foldr k z (build g) = g k z
 #-}

Compiler-g
enerated
rewrite
rules

◼ Compiler writes some new rewrite rules itself

◼ To specialise ‘f’ at type Int:

f :: Num a => a -> a
{-# SPECIALISE f :: Int -> Int #-}
f x = x * x

$sf1 :: Int -> Int
$sf1 x = mulInt x x

{-# RULES
 “SPEC f” forall (d:Num Int).
 f @Int d = $sf1 #-}

Replace f at type
Int by $sf1

◼ Again, two stages
◼ Definition site: generate the specialised

function, and the rewrite rule
◼ Call sites: use the rewrite rule, call site by call

site, to optimise the program
◼ Works beautifully across modules

Compiler-g
enerated
rewrite
rules

CASE:
case rules

◼ Case of known constructor

◼ Savvy to enclosing let-binding

case True of { False -> e1; True -> e2 }
 ===>
e2

let x = a:as in …(case x of
[] -> e1
(p:ps) -> e2)…

===>
let x = a:xs in …(let p=a; ps=as in e2)…

◼ Case of known constructor

◼ …and to enclosing case
case x of
 True -> …(case x of {True -> e1; False -> e2 })…
 False -> e3
===>
case x of
 True -> …e1…
 False -> e3

case True of { False -> e1; True -> e2 }
 ===>
e2

CASE:
case rules

CASE:
case of
case

module Prelude where
 null :: [a] -> Bool
 null [] = True
 null (x:xs) = False

 not :: Bool -> Bool
 not True = False
 not False = True

notNull xs = not (null xs)

 = case (null xs) of
 True -> False
 False -> True

 = case (case xs of
 [] -> True
 (p:ps) -> False) of
 True -> False
 False -> True

module Prelude where
 null :: [a] -> Bool
 null [] = True
 null (x:xs) = False

 not :: Bool -> Bool
 not True = False
 not False = True

 = case (case xs of
 [] -> True
 (p:ps) -> False) of
 True -> False
 False -> True

 = case xs of
 [] -> case True of
 True -> False
 False -> True

 (p:ps) -> case False of
 True -> False
 False -> True

 = case xs of
 [] -> False
 (p:ps) -> True

notNull xs = not (null xs)

CASE:
case of
case

A worry = case (case xs of
 [] -> True
 (p:ps) -> False) of
 True -> BIG1
 False -> BIG2

 = case xs of
 [] -> case True of
 True -> BIG1
 False -> BIG2

 (p:ps) -> case False of
 True -> BIG1
 False -> BIG2

Duplicates
arbitrary

amounts of code
:-(

Join points
(continuations)

 = case (case xs of
 [] -> True
 (p:ps) -> False) of
 True -> BIG1
 False -> BIG2

 = let j1 () = BIG1
 j2 () = BIG2
 in case xs of
 [] -> case True of
 True -> j1 ()
 False -> j2 ()

 (p:ps) -> case False of
 True -> j1 ()
 False -> j2 ()

No duplication :-)

Join
points

 = case (case xs of
 [] -> True
 (p:ps) -> False) of
 True -> BIG1
 False -> BIG2

 = let j1 () = BIG1
 j2 () = BIG2
 in case xs of
 [] -> case True of
 True -> j1 ()
 False -> j2 ()

 (p:ps) -> case False of
 True -> j1 ()
 False -> j2 ()

 = let j1 () = BIG1
 j2 () = BIG2
 in case xs of
 [] -> j1 ()
 (p:ps) -> j2 ()

 = case xs of
 [] -> BIG1
 (p:ps) -> BIG2

Ordinary
inlining
applies

Arbitrary
patterns

 = case (case xs of
 [] -> True
 (p:ps) -> False) of
 Just x -> BIG1
 Nothing -> BIG2

 = let j1 x = BIG1
 j2 () = BIG2
 in case xs of
 [] -> case True of
 Just x -> j1 x
 False -> j2 ()

 (p:ps) -> case False of
 True -> j1 x
 False -> j2 ()

Simply
abstract over
the pattern

bound
variables

◼ Works fine for
existentials,
GADTs

Join points
are like
control-flo
w labels

 = let j1 x = let v = x+1 in Just v
 j2 () = BIG2
 in case xs of
 [] -> case e1 of
 Just x -> j1 x
 False -> j2 ()

 (p:ps) -> case e2 of
 True -> j1 x
 False -> j2 ()

◼ Let bindings
allocate a thunk
or data
constructor

◼ Join points
allocate nothing!

◼ “Calling” a join
point = adjust
stack pointer
and goto

printf(“yes”) ;
if blah then { stuff }
 else { other stuff } ;
printf(“yes”);

Hot news:
Sequent
Core

 case (let j x = E1
 in case xs of
 Just x -> j x
 Nothing -> E2) of
 True -> R1
 False -> R2

= let j x = E1
 in case xs of
 Just x -> case (j x) of
 True -> R1
 False -> R2
 Nothing -> case E2 of
 True -> R1
 False -> R2

Bad bad
bad!

1. ‘j’ is no longer a
join point

2. The R1/R2 case
does not
scrutinise E1

Hot news:
Sequent
Core

 case (let j x = E1
 in case xs of
 Just x -> j x
 Nothing -> E2) of
 True -> R1
 False -> R2

= let j x = E1
 in case xs of
 Just x -> case (j x) of
 True -> R1
 False -> R2
 Nothing -> case E2 of
 True -> R1
 False -> R2

= let j x = case E1 of
 True -> R1
 False -> R2
 in case xs of
 Just x -> j x
 Nothing -> case E2 of
 True -> R1
 False -> R2

No no
no

Move outer
case into
join point

Sequent
Core

◼ Based on Sequent Calculus

◼ But in “direct style”

◼ Turns out to be very modest variant of Core;
easy to implement

◼ Some amazing new fusion happens

THINGS I HAVE NOT TOLD YOU

More in
Core

◼ Module-level transformations
◼ Strictness analysis
◼ Specialisation
◼ Float in, float out, lambda lifting
◼ Static argument transformation

◼ All of Haskell’s exotic type system is in Core
◼ Existentials
◼ GADTs
◼ Newtypes, coercions, casts
◼ Kind polymorphism
◼ Type level functions
◼ Roles

Still only
nine
constructors

data Expr
 = Var Var
 | Lit Literal
 | App Expr Expr
 | Lam Var Expr
 | Let Bind Expr
 | Case Expr Var Type [(AltCon, [Var], Expr)]
 | Type Type
 | Coercion Coercion
 | Cast Expr Coercion

data Var = Id Name Type
 | TyVar Name Kind
 | CoVar Name Type Type

data Bind = Rec [(Var,Expr)] | NonRec Var Expr

Conclusion
◼ Typed lambda calculus is totally amazing

◼ Little here is Haskell specific

◼ Cross-module inlining (SO IMPORTANT)
might be problematic for Erlang

◼ 25 years on, still in active development:
◼ Sequent Core
◼ Strict Core

EXISTENTIALS, GADTS, AND
COERCIONS

Existentials
data T a where
 T1 :: ∀a. ∀b. b -> (b -> a) -> T a

f :: T a -> a
f = Λa. \(x:T a).
 case x of
 T1 (b:*) (y:b) (g:b->a) -> g y

‘b’ is not mentioned in
T1’s result type

Pattern-matching on T1
binds the type variable
‘b’ as well as the term

variables ‘y’ and ‘g’

◼ We say that ‘b’ is an existential variable of T1

 T1 :: ∀ab. b -> (b -> a) -> T a
 ≡ ∀a. (∃b.(b, b->a)) -> T a

Reminder
data types and pattern matching

◼ OrOrOrdata Maybe a = Nothing | Just
a

Just 4 :: Maybe Int
Just True :: Maybe Bool
Nothing :: Maybe Int
Nothing :: Maybe Bool
Just (Just True) :: Maybe (Maybe Bool)

data Maybe a where
 Just :: a -> Maybe a
 Nothing :: Maybe a

Or
These two

declarations
mean the

same thing

A typical evaluator
data Term = Lit Int

| Succ Term
| IsZero Term
| If Term Term Term

data Value = VInt Int | VBool Bool

eval :: Term -> Value
eval (Lit i) = VInt i
eval (Succ t = case eval t of { VInt i -> VInt (i+1) }
eval (IsZero t) = case eval t of { VInt i -> VBool (i==0) }
eval (If b t1 t2)= case eval b of

VBool True -> eval t1
VBool False -> eval t2

Richer data types
What if you could define data types with richer return types?
Instead of this:

data Term where
Lit :: Int -> Term
Succ :: Term -> Term
IsZero :: Term -> Term
If :: Term -> Term -> Term -> Term

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

we want this:

Richer data types
data Term a where

Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

Lit 4 :: Term Int
IsZero (Lit 4) :: Term Bool
If (Lit 4) :: *** TYPE ERROR ***
IF (IsZero (Lit 4)) :: Term a -> Term a -> Term a

Major payoff: rules out ill-typed Terms

Type evaluation

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1
 else eval e2

Now you can write a cool typed evaluator

◼ Evaluator is easier to read and write

◼ Evaluator is more efficient too

In here
a~Int

In here
a~Bool

GADTs
Generalised Algebraic Data Types (GADTs):

Single idea: allow arbitrary return type for
constructors, provided outermost type
constructor is still the type being defined

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

GADTs in Core?

f :: T a -> a -> Bool
f = Λa. λ(x:T a) (y:a).
 let (v:Bool) = not y
 in case x of
 T1 (z:Bool) -> v && z
 T2 -> False

data T a where
 T1 :: Bool -> T Bool
 T2 :: T a

f :: T a -> a -> Bool
f = Λa. λ(x:T a) (y:a).
 case x of
 T1 (z:Bool) -> let (v:Bool) = not y
 in v && z
 T2 -> False

Problem 1
not :: Bool -> Bool

but
y::a

Problem 2
Floating the let seems

well-scoped, but gives a
bogus program

Solution to both problems: EVIDENCE
data T a where
 T1 :: Bool -> T Bool
 T2 :: T a

f :: T a -> a -> Bool
f = Λa. λ(x:T a) (y:a).
 case x of
 T1 (c:a~Bool) (z:Bool)
 -> let (v:Bool) = not (y ▷ c)
 in v && z
 T2 -> False

Pattern matching on T1
brings into scope some

EVIDENCE that (a=Bool)

We can USE the evidence to
convert (y::a) to type Bool

c is an EVIDENCE VARIABLE

T1 :: ∀a. (a~Bool) -> Bool -> T a

If e:τ and c: τ~σ,
then (e ▷ c) : σ

Evidence

◼ Any application of T1 must supply evidence
 T1 σ e1 e2
where e1 : (σ~Bool), e2 : Bool

◼ Here e1 is a value that denotes evidence
that σ=Bool

◼ And any pattern match on T1 gives access to
evidence
 case s of { T1 (c:σ~Bool) (y:Bool) -> ... }
where s : T σ

T1 :: ∀a. (a~Bool) -> Bool -> T a

System FC

e ::= x | k
| e

1
 e

2
 | λ(x:τ).e

| e τ | Λ(a:κ).e
| let bind in e
| case e of { alt

1
 .. alt

n
 }

| e γ | λ(c:τ
1
~τ

2
).e

| e ▷ γ

Coercion abstraction
and application

A coercion γ:τ
1
~τ

2

is evidence that
t1 and t2 are

equivalent

Type-safe cast
If e:τ and γ: τ~σ,
then (e ▷ γ) : σThe syntax of a term (again)

encodes its typing derivation

Modifications to Core
data Expr
 = Var Var
 | Lit Literal
 | App Expr Expr
 | Lam Var Expr
 | Let Bind Expr
 | Case Expr Var Type [(AltCon, [Var], Expr)]
 | Type Type
 | Coercion Coercion -- Used for coercion apps
 | Cast Expr Coercion -- Type-safe cast

data Var = Id Name Type -- Term variable
 | TyVar Name Kind -- Type variable
 | CoVar Name Type Type -- Coercion var

Evidence terms

◼ Consider the call:
 T1 Bool <Bool> True : T Bool

◼ Here <Bool> : Bool ~ Bool

◼ Can I call T1 Char γ True : T Char?

◼ No: that would need (γ : Char ~ Bool) and
there are no such terms γ

T1 :: ∀a. (a~Bool) -> Bool -> T a

γ ::= <τ> | ...

Composing evidence terms

◼ If γ : τ ~ σ then sym γ : σ ~ τ

data T a where
 T1 :: Bool -> T Bool
 T2 :: T a

g :: T a -> Maybe a
g = Λa. λ(x:T a).
 case x of
 T1 (c:a~Bool) (z:Bool)
 -> Just a (z ▷ sym c)
 T2 -> Nothing

Have evidence c:a~Bool
Need evidence
sym c : Bool~a

γ ::= <τ> | sym γ | ...

Composing evidence terms

◼ If γi : τi ~σi then T γ1 ... γn : T τ1 ... τn ~ T σ1 ... σn

data T a where
 T1 :: Bool -> T Bool
 T2 :: T a

g :: T a -> Maybe a
g = Λa. λ(x:T a).
 case x of
 T1 (c:a~Bool) (z:Bool)
 -> (Just Bool z) ▷ Maybe (sym c)
 T2 -> Nothing

Have evidence c:a~Bool
Need evidence

Maybe (sym c) : Maybe Bool ~ Maybe a

γ ::= <τ> | sym γ | T γ1 ... γn | ...

Evidence terms

Cost model

◼ Coercions are computationally irrelevant

◼ Coercion abstractions, applications, and casts are erased at
runtime

Bottom line

◼ Just like type abstraction/application, evidence
abstraction/application provides a simple, elegant, consistent
way to
◼ express programs that use local type equalities
◼ in a way that is fully robust to program transformation
◼ and can be typechecked in an absolutely straightforward way

◼ Cost model: coercion abstractions, applications, and casts are
erased at runtime

AXIOMS

newtypes

◼ Haskell

◼ No danger of confusing Age with Int

◼ Type abstraction by limiting visibility of MkAge

◼ Cost model: Age and Int are represented the same way

newtype Age = MkAge Int

bumpAge :: Age -> Int -> Age
bumpAge (MkAge a) n = MkAge (a+n)

In Core?

◼ Newtype constructor/pattern matching turn
into casts

◼ (New) Top-level axiom for equivalence
between Age and Int

◼ Everything else as before

newtype Age = MkAge Int

bumpAge :: Age -> Int -> Age
bumpAge (MkAge a) n = MkAge (a+n)

axiom ageInt :: Age ~ Int

bumpAge :: Age -> Int -> Age
bumpAge = \(a:Age) (n:Int).
 (a ▷ ageInt + n) ▷ sym ageInt

Parameterised newtypes

◼ Axioms can be parameterised, of course
◼ No problem with having a polytype in s~t

type GenericQ r = GQ (forall a. Data a => a -> r)

axiom axGQ r :: GenericQ r ~ ∀a. Data a => a -> r

Type functions
type family Add (a::Nat) (b::Nat) :: Nat

type instance Add Z b = b
type instance Add (S a) b = S (Add a b)

axiom axAdd1 b :: Add Z b ~ b
axiom axAdd2 a b :: Add (S a) b ~ S (Add a b)

WRAP UP

Wrap up
◼ Many more aspects not covered in this talk

◼ Roles: nominal and representational equality
◼ Optimising coercions
◼ “Closed” type families with non-linear patterns,

and proving consistency thereof

◼ Heterogeneous equalities; coercions at the type
level

◼ Collapsing types and kinds: * :: *

type family Eq a b where
 Eq a a = True
 Eq a b = False

Wrap up
◼ Small, statically typed intermediate language

◼ Sanity
◼ Powerful, general optimisations
◼ Lint

◼ Main “new” idea: programs manipulate evidence
along with types and values. This single idea in
Core explains multiple source-language concepts:
◼ GADTs
◼ Newtypes
◼ Type and data families (both open and closed)

◼ Great example of theory into practice

