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GHC Haskell
A very complicated and 

ill-defined language, with 
a long user manual, that 

almost no one 
understands completely
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old



GHC 
is 

big 
and 
old

Question
 

how to stay sane?



How GHC works

Haskell
Massive language

Hundreds of pages 
of user manual

Syntax has dozens 
of data types 

100+ constructors

Core
3 types, 

15 constructors 

Rest of GHC
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A typed 
intermediate 
language

Haskell Core (the typed IL)
Big Small
Implicitly typed Explicitly typed
Binders typically 
un-annotated
  \x. x && y

Every binder is 
type-annotated
  \(x:Bool). x && y

Type inference 
(complex, slow)

Type checking 
(simple, fast)

Complicated to specify 
just which programs will 
type-check

Very simple to specify just 
which programs are 
type-correct

Ad-hoc restrictions to 
make inference feasible

Very expressive indeed; 
simple, uniform
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A typed intermediate language: why?
1. Small IL means that analysis, optimisation, and code generation, 

handle only a small language.

2. Type checker (“Lint”) for Core is a very powerful internal consistency 
check on most of the compiler
◼ Desugarer must produce well-typed Core
◼ Optimisation passes must transform well-typed Core to well-typed Core

3. Design of Core is a powerful sanity check on crazy type-system 
extensions to source language.  If you can desugar it into Core, it 
must be sound; if not, think again.
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handle only a small language.

2. Type checker (“Lint”) for Core is a very powerful internal consistency 
check on most of the compiler
◼ Desugarer must produce well-typed Core
◼ Optimisation passes must transform well-typed Core to well-typed Core

3. Design of Core is a powerful sanity check on crazy type-system 
extensions to source language.  If you can desugar it into Core, it 
must be sound; if not, think again.

GHC is the only production 

compiler that remorselessly 

pursues this idea of a 

strongly-typed intermediate 

language

The design of Core is probably 

GHC’s single most substantial 

technical achievement



Why should you care about Core?

◼ Because it is jolly interesting

◼ Because much of it would work for Erlang

◼ Because it shows theory and practice working together



WHAT SHOULD CORE 
BE LIKE?



What should Core be like?
◼ Start with lambda calculus.  From “Lambda the Ultimate X” 

papers we know that lambda is super-powerful.
◼ But we need a TYPED lambda calculus
◼ Idea:

◼ start with lambda calculus
◼ sprinkle type annotations

◼ But:
◼ Don’t want to be buried in type annotations
◼ Types change as you optimise



Example
compose :: (b->c) -> (a->b) -> a -> c
compose = λ(f:b->c). λ(g:a->b). λ(x:a).

 let tmp:b = g x
 in f tmp

◼ Idea: put type annotations on each binder 
(lambda, let), but nowhere else

◼ But: where are ‘a’  ‘b’  ‘c’ bound?

◼ And: unstable under transformation...



Example
compose :: (b->c) -> (a->b) -> a -> c
compose = λf:b->c. λg:a->b. λx:a.

    let tmp:b = g x
    in f tmp

◼ Now the type annotations are wrong

◼ Solution: learn from Girard and Reynolds!

compose isPos neg
= (inline compose:

  f=isPos, g=neg)
   λx:a. let tmp:b = neg x

     in isPos tmp

neg :: Int -> Int
isPos :: Int -> Bool



System F
compose :: ∀abc. (b->c) -> (a->b) -> a -> c
compose = Λabc. λf:b->c. λg:a->b. λx:a.

 let tmp:b = g x
 in f tmp

◼ Idea: an explicit (big) lambda binds type variables



System F

compose @Int @Int @Bool isPos neg
= (inline compose:

a=Int, b=Int, c=Bool, f=isPos, g=neg)
   λx:Int. let tmp:Int = neg x

       in isPos tmp

compose :: ∀abc. (b->c) -> (a->b) -> a -> c
compose = Λabc. λf:b->c. λg:a->b. λx:a.

 let tmp:b = g x
 in f tmp

◼ Big lambdas are applied to types,
just as little lambdas are applied to values

◼ Now the types stay correct!



The real 
“System 
F”

◼ In GHC, the IL is like what we’ve seen, plus:
◼ Algebraic data type declarations

◼ Data constructors in terms

◼ Case expressions 

◼ Let expressions

data Maybe a = Nothing | Just a

λx:Int. Just (Just x)

case x of { Nothing -> 0; Just x -> x+1 }

let x:Int = 4 in x+x



Core: GHC’s 
intermediate 
language

data Expr
  = Var      Var
  | Lit      Literal
  | App      Expr Expr
  | Lam      Var Expr  -- Both term and type lambda
  | Let      Bind Expr
  | Case     Expr Var Type [(AltCon, [Var], Expr)]
  | Type     Type      -- Used for type application

data Var = Id    Name Type  -- Term variable
         | TyVar Name Kind  -- Type/kind variable

type Kind = Type
data Type = TyVarTy  Var
  | LitTy    TyLit
  | AppTy    Type Type
  | TyConApp TyCon [Type]
  | FunTy    Type Type   -- Not really necy
  | ForAllTy Var Type



Core: GHC’s 
intermediate 
language

data Expr
  = Var      Var
  | Lit      Literal
  | App      Expr Expr
  | Lam      Var Expr  -- Both term and type lambda
  | Let      Bind Expr
  | Case     Expr Var Type [(AltCon, [Var], Expr)]
  | Type     Type      -- Used for type application

data Var = Id    Name Type  -- Term variable
         | TyVar Name Kind  -- Type/kind variable

type Kind = Type
data Type = TyVarTy  Var
  | LitTy    TyLit
  | AppTy    Type Type
  | TyConApp TyCon [Type]
  | FunTy    Type Type   -- Not really necy
  | ForAllTy Var Type



Core: GHC’s 
intermediate 
language

data Expr
  = Var      Var
  | Lit      Literal
  | App      Expr Expr
  | Lam      Var Expr  -- Both term and type lambda
  | Let      Bind Expr
  | Case     Expr Var Type [(AltCon, [Var], Expr)]
  | Type     Type      -- Used for type application

data Var = Id    Name Type  -- Term variable
         | TyVar Name Kind  -- Type/kind variable

type Kind = Type
data Type = TyVarTy  Var
  | LitTy    TyLit
  | AppTy    Type Type
  | TyConApp TyCon [Type]
  | FunTy    Type Type   -- Not really necy
  | ForAllTy Var Type

26 years old and still tiny.

  Bravo Girard & Reynolds!



What’s 
good 
about 
System F

◼ In our presentation of System F, each variable 
occurrence is annotated with its type. 

◼ Hence every term has a unique type

◼ exprType is pure; needs no “Gamma” argument
◼ Sharing of the Var means that the apparent 

duplication is not real

exprType :: Expr -> Type
exprType (Var v)   = varType v
exprType (Lam v a) = Arrow (varType v) (exprType a)
...more equations...



What’s good about System F?
Type checking 
(Lint) is fast 
and easy, 
because the 
rules are 
syntax-directe
d |- λr:(Int->Bool). r 4 : (Int -> Bool) -> Bool

r:Int->Bool |- r 4 : Bool 

r:Int->Bool |- r : Int -> Bool r:Int->Bool |- 4 : Int 

(fabs)

(fapp)

(flit)(fvar)



What’s good about System F?
Type checking 
(Lint) is fast 
and easy, 
because the 
rules are 
syntax-directe
d |- λr:(Int->Bool). r 4 : (Int -> Bool) -> Bool

r:Int->Bool |- r 4 : Bool 

r:Int->Bool |- r : Int -> Bool r:Int->Bool |- 4 : Int 

(fabs)

(fapp)

(flit)(fvar)

The syntax of a term encodes its 
typing derivation



Story so far

◼ Very small, statically typed language

◼ Robust  to transformations (ie if the term is well typed, then 
the transformed term is well typed)

◼ Simple, pure exprType

◼ Type checking (Lint) is easy and fast



THE CORE PIPELINE



• The Simplifier
• Inlining
• Rewrite rules
• Beta reduction
• Case of case
• Case of known 

constructor 
• etc etc etc

• Specialise overloading
• Float out
• Float in
• Demand, cardinality, and 

CPR  analysis
• Arity analysis
• Call-pattern specialisation 

(SpecConstr)



module Foo where
  f :: Int -> Int
  f x = x+1

bash$ ghc -c Foo.hs -ddump-simpl
==================== Tidy Core ====================
Result size of Tidy Core 
   = {terms: 7, types: 4, coercions: 0}

Foo.f :: GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=1, Str=DmdType]
Foo.f =
  \ (x_apE :: GHC.Types.Int) ->
    GHC.Num.+ @ GHC.Types.Int
              GHC.Num.$fNumInt 
              x_apE (GHC.Types.I# 1)



bash$ ghc -c Foo.hs -dshow-passes
*** Checking old interface for main:Foo:
*** Parser:
*** Renamer/typechecker:
*** Desugar:
Result size of Desugar (after optimization)
  = {terms: 7, types: 4, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 7, types: 4, coercions: 0}
*** Tidy Core:
Result size of Tidy Core = {terms: 7, types: 4, coercions: 0}
*** CorePrep:
Result size of CorePrep = {terms: 9, types: 5, coercions: 0}
*** Stg2Stg:
*** CodeOutput:
*** New CodeGen:



bash$ ghc -c Foo.hs -ddump-simpl -O
==================== Tidy Core ====================
Result size of Tidy Core 
    = {terms: 9, types: 5, coercions: 0}

Foo.f :: GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=1, Caf=NoCafRefs,
 Str=DmdType <S,1*U(U)>m,
 Unf=Unf{Src=InlineStable, TopLvl=True, 
         Arity=1, Value=True,
         ConLike=True, WorkFree=True, Expandable=True,
         Guidance=ALWAYS_IF(unsat_ok=True,
                            boring_ok=False)
         Tmpl= ...]
Foo.f =
  \ (x_arV :: GHC.Types.Int) ->
    case x_arV of _ [Occ=Dead] { GHC.Types.I# x1_aNv ->
    GHC.Types.I# (GHC.Prim.+# x1_aNv 1)
    }



bash$ ghc -c Foo.hs -O -dshow-passes
*** Parser:
*** Renamer/typechecker:
*** Desugar:
Result size of Desugar (after optimization)
  = {terms: 7, types: 4, coercions: 0}
*** Simplifier:
Result size of Simplifier iteration=1
  = {terms: 6, types: 3, coercions: 0}
Result size of Simplifier = {terms: 6, types: 3, coercions: 0}
*** Specialise:
Result size of Specialise = {terms: 6, types: 3, coercions: 0}
*** Float out(FOS {Lam = Just 0, Consts = True, PAPs = False}):
Result size of Float out(FOS {Lam = Just 0,Consts = True,PAPs = False})
  = {terms: 8, types: 4, coercions: 0}
*** Float inwards:
Result size of Float inwards = {terms: 8, types: 4, coercions: 0}
*** Simplifier:
Result size of Simplifier iteration=1
  = {terms: 12, types: 6, coercions: 0}
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Demand analysis:
Result size of Demand analysis = {terms: 9, types: 5, coercions: 0}
*** Worker Wrapper binds:
Result size of Worker Wrapper binds
  = {terms: 9, types: 5, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Float out(FOS {Lam = Just 0, Consts = True, PAPs = True}):
Result size of Float out(FOS {Lam = Just 0,Consts = True, PAPs = True})
  = {terms: 9, types: 5, coercions: 0}
*** Common sub-expression:
Result size of Common sub-expression
  = {terms: 9, types: 5, coercions: 0}
*** Float inwards:
Result size of Float inwards = {terms: 9, types: 5, coercions: 0}
*** Simplifier:
Result size of Simplifier = {terms: 9, types: 5, coercions: 0}
*** Tidy Core:
Result size of Tidy Core = {terms: 9, types: 5, coercions: 0}
*** CorePrep:
Result size of CorePrep = {terms: 12, types: 6, coercions: 0}
*** Stg2Stg:
*** CodeOutput:
*** New CodeGen:



CORE OPTIMISATIONS
A hail of bullets



• The Simplifier
• Inlining
• Rewrite rules
• Beta reduction
• Case of case
• Case of known 

constructor 
• etc etc etc

• Specialise overloading
• Float out
• Float in
• Demand, cardinality, and 

CPR  analysis
• Arity analysis
• Call-pattern specialisation 

(SpecConstr)



The mighty simplifier

◼ Simplifier performs a raft of local optimisations
• Inlining
• Beta reduction
• Rewrite rules
• Case of known constructor 
• Case of case
• etc etc etc

◼ These transformations cascade



LET: 
Inlining

◼ Inlining is the key transformation
◼ Replace x by x’s definition

◼ Issues:
◼ May duplicate code <rhs>

How often does ‘x’ occur?  How big is <rhs>?
◼ May duplicate work   let x = factorial y in …

Is <rhs> a value or not?
◼ Which occurrences to substitute for.

All?  Some?  None?

let x = <rhs> in …x…x…
===>

let x = <rhs> in …x…<rhs>…

Lots of 
heuristics 

here



◼ Works even if x’s definition is in another 
module, or another package

module Prelude where
  null :: [a] -> Bool
  null [] = True
  null (x:xs) = False

  not :: Bool -> Bool
  not True  = False
  not False = True

module X where
  import Prelude
  notNull xs = not (null xs) 

Prelude.hi
Gives type signature and 

unfolding for null, not

GHC

X.hi

LET: 
Inlining



LAMBDA: 
Beta 
reduction

◼ Beta reduction is easy: make a ‘let’

◼ Note that: beta reduction produces a ‘let’; 
now inlining decisions take over again.

◼ Other compilers: inline function call
GHC: inline occurrence of function; then beta 
reduce

(\x. e1) e2
===>

let x = e2 in e1



APPLY: 
Rewrite 
rules

◼ Lots of optimisations of the form
      fun arg1 … argn   ==>    result

◼ A large number are built-in to GHC; 
very easy to extend this list

◼ Simplifier: applies the rules exhaustively

◼ Simple “phase system” to control order of 
application.   Apply phase-2 rules; then phase-1 rules; 
then phase-0 rules.

+# x 0   ==>   x



Rewrite 
rules

◼ Users can write more RULES

◼ Works across modules

◼ Effectively: extends the compiler with 
library-specific optimisation rules!

◼ Compiler does not (cannot) check correctness; 
that’s up to the programmer.

{-# RULES
  “foldr/build” forall k z g. 
      foldr k z (build g) = g k z
 #-} 



Compiler-g
enerated 
rewrite 
rules

◼ Compiler writes some new rewrite rules itself

◼ To specialise ‘f’ at type Int:

f :: Num a => a -> a
{-# SPECIALISE f :: Int -> Int #-}
f x = x * x

$sf1 :: Int -> Int
$sf1 x = mulInt x x

{-# RULES
  “SPEC f” forall (d:Num Int). 
      f @Int d = $sf1    #-}

Replace f at type 
Int by $sf1 



◼ Again, two stages
◼ Definition site: generate the specialised 

function, and the rewrite rule
◼ Call sites: use the rewrite rule, call site by call 

site, to optimise the program
◼ Works beautifully across modules

Compiler-g
enerated 
rewrite 
rules



CASE: 
case rules

◼ Case of known constructor

◼ Savvy to enclosing let-binding

case True of { False -> e1; True -> e2 }
  ===>
e2

let x = a:as in …(case x of
[]     -> e1
(p:ps) -> e2)…

===>
let x = a:xs in …(let p=a; ps=as in e2)…



◼ Case of known constructor

◼ …and to enclosing case
case x of
  True  -> …(case x of {True -> e1; False -> e2 })…
  False -> e3
===>
case x of
  True  -> …e1…
  False -> e3

case True of { False -> e1; True -> e2 }
  ===>
e2

CASE: 
case rules



CASE: 
case of 
case

module Prelude where
  null :: [a] -> Bool
  null [] = True
  null (x:xs) = False

  not :: Bool -> Bool
  not True  = False
  not False = True

notNull xs = not (null xs)

 = case (null xs) of 
     True -> False
     False -> True

 = case (case xs of
           []     -> True
           (p:ps) -> False) of 
     True -> False
     False -> True



module Prelude where
  null :: [a] -> Bool
  null [] = True
  null (x:xs) = False

  not :: Bool -> Bool
  not True  = False
  not False = True

 = case (case xs of
           []     -> True
           (p:ps) -> False) of 
     True  -> False
     False -> True

 = case xs of
     []     -> case True of 
                 True -> False
                 False -> True

     (p:ps) -> case False of 
                 True  -> False
                 False -> True

 = case xs of
     []     -> False
     (p:ps) -> True

notNull xs = not (null xs)

CASE: 
case of 
case



A worry  = case (case xs of
           []     -> True
           (p:ps) -> False) of 
     True  -> BIG1
     False -> BIG2

 = case xs of
     []     -> case True of 
                 True -> BIG1
                 False -> BIG2

     (p:ps) -> case False of 
                 True  -> BIG1
                 False -> BIG2

Duplicates 
arbitrary 

amounts of code 
:-(



Join points 
(continuations)

 = case (case xs of
           []     -> True
           (p:ps) -> False) of 
     True  -> BIG1
     False -> BIG2

 = let j1 () = BIG1
       j2 () = BIG2
   in case xs of
     []     -> case True of 
                 True  -> j1 ()
                 False -> j2 ()

     (p:ps) -> case False of 
                 True  -> j1 ()
                 False -> j2 ()

No duplication :-)



Join 
points

 = case (case xs of
           []     -> True
           (p:ps) -> False) of 
     True  -> BIG1
     False -> BIG2

 = let j1 () = BIG1
       j2 () = BIG2
   in case xs of
     []     -> case True of 
                 True  -> j1 ()
                 False -> j2 ()

     (p:ps) -> case False of 
                 True  -> j1 ()
                 False -> j2 ()

 = let j1 () = BIG1
       j2 () = BIG2
   in case xs of
     []     -> j1 ()
     (p:ps) -> j2 ()

 = case xs of
     []     -> BIG1
     (p:ps) -> BIG2

Ordinary 
inlining 
applies



Arbitrary 
patterns

 = case (case xs of
           []     -> True
           (p:ps) -> False) of 
     Just x  -> BIG1
     Nothing -> BIG2

 = let j1 x  = BIG1
       j2 () = BIG2
   in case xs of
     []     -> case True of 
                 Just x -> j1 x
                 False  -> j2 ()

     (p:ps) -> case False of 
                 True  -> j1 x
                 False -> j2 ()

Simply 
abstract over 
the pattern 

bound 
variables

◼ Works fine for 
existentials, 
GADTs



Join points 
are like 
control-flo
w labels

 = let j1 x  = let v = x+1 in Just v       
       j2 () = BIG2
   in case xs of
     []     -> case e1 of 
                 Just x -> j1 x
                 False  -> j2 ()

     (p:ps) -> case e2 of 
                 True  -> j1 x
                 False -> j2 ()

◼ Let bindings 
allocate a thunk 
or data 
constructor

◼ Join points 
allocate nothing!

◼ “Calling” a join 
point = adjust 
stack pointer 
and goto

printf( “yes” ) ;
if blah then { stuff }
        else { other stuff } ;
printf( “yes” );



Hot news: 
Sequent 
Core

 case (let j x = E1
         in case xs of
           Just x  -> j x
           Nothing -> E2) of
      True  -> R1
      False -> R2

= let j x = E1
  in case xs of
    Just x  -> case (j x) of 
                 True  -> R1
                 False -> R2
    Nothing -> case E2 of
                 True  -> R1
                 False -> R2

Bad bad 
bad!

1. ‘j’ is no longer a 
join point

2. The R1/R2 case 
does not 
scrutinise E1



Hot news: 
Sequent 
Core

 case (let j x = E1
         in case xs of
           Just x  -> j x
           Nothing -> E2) of
      True  -> R1
      False -> R2

= let j x = E1
  in case xs of
    Just x  -> case (j x) of 
                 True  -> R1
                 False -> R2
    Nothing -> case E2 of
                 True  -> R1
                 False -> R2

= let j x = case E1 of
              True  -> R1
              False -> R2
  in case xs of
    Just x  -> j x
    Nothing -> case E2 of
                 True  -> R1
                 False -> R2

No no 
no

Move outer 
case into 
join point



Sequent 
Core

◼ Based on Sequent Calculus

◼ But in “direct style”

◼ Turns out to be very modest variant of Core; 
easy to implement

◼ Some amazing new fusion happens



THINGS I HAVE NOT TOLD YOU



More in 
Core

◼ Module-level transformations
◼ Strictness analysis
◼ Specialisation
◼ Float in, float out, lambda lifting
◼ Static argument transformation

◼ All of Haskell’s exotic type system is in Core
◼ Existentials
◼ GADTs
◼ Newtypes, coercions, casts
◼ Kind polymorphism
◼ Type level functions
◼ Roles



Still only 
nine 
constructors

data Expr
  = Var      Var
  | Lit      Literal
  | App      Expr Expr
  | Lam      Var Expr
  | Let      Bind Expr
  | Case     Expr Var Type [(AltCon, [Var], Expr)]
  | Type     Type
  | Coercion Coercion
  | Cast  Expr Coercion

data Var = Id    Name Type
         | TyVar Name Kind
         | CoVar Name Type Type

data Bind = Rec [(Var,Expr)] | NonRec Var Expr



Conclusion
◼ Typed lambda calculus is totally amazing

◼ Little here is Haskell specific

◼ Cross-module inlining (SO IMPORTANT) 
might be problematic for Erlang

◼ 25 years on, still in active development:
◼ Sequent Core
◼ Strict Core



EXISTENTIALS, GADTS, AND 
COERCIONS



Existentials
data T a where
  T1 :: ∀a. ∀b. b -> (b -> a) -> T a

f :: T a -> a
f = Λa. \(x:T a).
    case x of 
      T1 (b:*) (y:b) (g:b->a) -> g y

‘b’ is not mentioned in 
T1’s result type

Pattern-matching on T1 
binds the type variable 
‘b’ as well as the term 

variables ‘y’ and ‘g’

◼ We say that ‘b’ is an existential variable of T1 

 T1 :: ∀ab. b -> (b -> a) -> T a
     ≡ ∀a. (∃b.(b, b->a)) -> T a



Reminder 
data types and pattern matching

◼ OrOrOrdata Maybe a = Nothing | Just 
a

Just 4 :: Maybe Int
Just True :: Maybe Bool
Nothing :: Maybe Int
Nothing :: Maybe Bool
Just (Just True) :: Maybe (Maybe Bool)

data Maybe a where
    Just :: a -> Maybe a
    Nothing :: Maybe a

Or
These two 

declarations 
mean the 

same thing 



A typical evaluator
data Term = Lit Int 

| Succ Term 
| IsZero Term 
| If Term Term Term

data Value = VInt Int | VBool Bool

eval :: Term -> Value
eval (Lit i) = VInt i
eval (Succ t = case eval t of { VInt i -> VInt (i+1) }
eval (IsZero t) = case eval t of { VInt i -> VBool (i==0) }
eval (If b t1 t2)= case eval b of

VBool True -> eval t1
VBool False -> eval t2



Richer data types
What if you could define data types with richer return types?
Instead of this:

data Term where
Lit :: Int -> Term
Succ :: Term -> Term
IsZero :: Term -> Term 
If :: Term -> Term -> Term -> Term

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

we want this:



Richer data types
data Term a where

Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

Lit 4 :: Term Int
IsZero (Lit 4) :: Term Bool
If (Lit 4) ::   *** TYPE ERROR ***
IF (IsZero (Lit 4)) :: Term a -> Term a -> Term a

Major payoff: rules out ill-typed Terms



Type evaluation

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1 
                                           else eval e2

Now you can write a cool typed evaluator

◼ Evaluator is easier to read and write

◼ Evaluator is more efficient too

In here 
a~Int

In here 
a~Bool



GADTs
Generalised Algebraic Data Types (GADTs):

Single idea: allow arbitrary return type for 
constructors, provided outermost type 
constructor is still the type being defined

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a



GADTs in Core?

f :: T a -> a -> Bool
f = Λa. λ(x:T a) (y:a).
    let (v:Bool) = not y 
    in case x of 
      T1 (z:Bool) -> v && z
      T2 -> False

data T a where
  T1 :: Bool -> T Bool
  T2 :: T a

f :: T a -> a -> Bool
f = Λa. λ(x:T a) (y:a).
    case x of 
      T1 (z:Bool) -> let (v:Bool) = not y
                     in v && z
      T2 -> False

Problem 1
not :: Bool -> Bool

but 
y::a

Problem 2
Floating the let seems 

well-scoped, but gives a 
bogus program



Solution to both problems: EVIDENCE
data T a where
  T1 :: Bool -> T Bool
  T2 :: T a

f :: T a -> a -> Bool
f = Λa. λ(x:T a) (y:a).
    case x of 
      T1 (c:a~Bool) (z:Bool) 
           -> let (v:Bool) = not (y ▷ c)
              in v && z
      T2 -> False

Pattern matching on T1 
brings into scope some 

EVIDENCE that (a=Bool)

We can USE the evidence to 
convert (y::a) to type Bool

c is an EVIDENCE VARIABLE

T1 :: ∀a. (a~Bool) -> Bool -> T a

If e:τ and c: τ~σ,
then (e ▷ c) : σ



Evidence

◼ Any application of T1 must supply evidence
   T1 σ e1 e2 
where e1 : (σ~Bool ), e2 : Bool

◼ Here e1  is a value that denotes evidence 
that σ=Bool 

◼ And any pattern match on T1 gives access to 
evidence
   case s  of { T1 (c:σ~Bool ) (y:Bool) -> ... }
where  s  : T σ

T1 :: ∀a. (a~Bool) -> Bool -> T a



System FC

e ::= x | k
| e

1
 e

2
  |  λ(x:τ).e

| e τ     |  Λ(a:κ).e
| let bind in e
| case e of { alt

1
 .. alt

n
 }

| e γ     | λ(c:τ
1
~τ

2
).e

| e ▷ γ

Coercion abstraction 
and application

A coercion γ:τ
1
~τ

2
 

is evidence that 
t1 and t2 are 

equivalent

Type-safe cast
If e:τ and γ: τ~σ,
then (e ▷ γ) : σThe syntax of a term (again) 

encodes its typing derivation



Modifications to Core
data Expr
  = Var      Var
  | Lit      Literal
  | App      Expr Expr
  | Lam      Var Expr
  | Let      Bind Expr
  | Case     Expr Var Type [(AltCon, [Var], Expr)]
  | Type     Type
  | Coercion Coercion  -- Used for coercion apps
  | Cast  Expr Coercion -- Type-safe cast

data Var = Id    Name Type  -- Term variable
         | TyVar Name Kind  -- Type variable
         | CoVar Name Type Type  -- Coercion var



Evidence terms

◼ Consider the call:   
   T1 Bool <Bool> True  :  T Bool

◼ Here <Bool> : Bool ~ Bool

◼ Can I call   T1 Char γ True  : T Char?

◼ No: that would need (γ : Char ~ Bool) and 
there are no such terms γ

T1 :: ∀a. (a~Bool) -> Bool -> T a

γ ::= <τ>  | ...



Composing evidence terms

◼ If   γ : τ ~ σ   then    sym γ : σ ~ τ

data T a where
  T1 :: Bool -> T Bool
  T2 :: T a

g :: T a -> Maybe a
g = Λa. λ(x:T a).
    case x of 
      T1 (c:a~Bool) (z:Bool) 
           -> Just a (z ▷ sym c)
      T2 -> Nothing

Have evidence c:a~Bool
Need evidence 
sym c : Bool~a

γ ::= <τ>  | sym γ | ...



Composing evidence terms

◼ If   γi : τi ~σi   then    T γ1 ... γn : T τ1 ... τn ~ T σ1 ... σn

data T a where
  T1 :: Bool -> T Bool
  T2 :: T a

g :: T a -> Maybe a
g = Λa. λ(x:T a).
    case x of 
      T1 (c:a~Bool) (z:Bool) 
           -> (Just Bool z) ▷ Maybe (sym c)
      T2 -> Nothing

Have evidence c:a~Bool
Need evidence 

Maybe (sym c) : Maybe Bool ~ Maybe a

γ ::= <τ> | sym γ | T γ1 ... γn | ... 



Evidence terms



Cost model

◼ Coercions are computationally irrelevant

◼ Coercion abstractions, applications, and casts are erased at 
runtime



Bottom line

◼ Just like type abstraction/application, evidence 
abstraction/application provides a simple, elegant, consistent 
way to
◼ express programs that use local type equalities
◼ in a way that is fully robust to program transformation
◼ and can be typechecked in an absolutely straightforward way

◼ Cost model: coercion abstractions, applications, and casts are 
erased at runtime



AXIOMS



newtypes

◼ Haskell

◼ No danger of confusing Age with Int

◼ Type abstraction by limiting visibility of MkAge

◼ Cost model: Age and Int are represented the same way

newtype Age = MkAge Int

bumpAge :: Age -> Int -> Age
bumpAge (MkAge a) n = MkAge (a+n)



In Core?

◼ Newtype constructor/pattern matching turn 
into casts

◼ (New) Top-level axiom for equivalence 
between Age and Int

◼ Everything else as before

newtype Age = MkAge Int

bumpAge :: Age -> Int -> Age
bumpAge (MkAge a) n = MkAge (a+n)

axiom ageInt :: Age ~ Int

bumpAge :: Age -> Int -> Age
bumpAge = \(a:Age) (n:Int).
          (a ▷ ageInt + n) ▷ sym ageInt



Parameterised newtypes

◼ Axioms can be parameterised, of course
◼ No problem with having a polytype in s~t

type GenericQ r = GQ (forall a. Data a => a -> r)

axiom axGQ r :: GenericQ r ~ ∀a. Data a => a -> r 



Type functions
type family Add (a::Nat) (b::Nat) :: Nat

type instance Add Z     b = b
type instance Add (S a) b = S (Add a b)

axiom axAdd1 b   :: Add Z b ~ b
axiom axAdd2 a b :: Add (S a) b ~ S (Add a b)



WRAP UP



Wrap up
◼ Many more aspects not covered in this talk

◼ Roles: nominal and representational equality
◼ Optimising coercions
◼ “Closed” type families with non-linear patterns, 

and proving consistency thereof

◼ Heterogeneous equalities; coercions at the type 
level

◼ Collapsing types and kinds: * :: *

type family Eq a b where
  Eq a a = True
  Eq a b = False



Wrap up
◼ Small, statically typed intermediate language

◼ Sanity
◼ Powerful, general optimisations
◼ Lint

◼ Main “new” idea: programs manipulate evidence 
along with types and values.   This single idea in 
Core explains multiple source-language concepts:
◼ GADTs
◼ Newtypes
◼ Type and data families (both open and closed)

◼ Great example of theory into practice


