GraphQL Erlang

Jesper Louis Andersen
jesper.louis.andersen@gmail.com
ShopGun

June 8§, 2017

Overview:
» Background
» GraphQL ltself
» The implementation

Not covered

| can’t cover everything. A list of things which has a story
in GraphQL, but I skip:

» Subscriptions

» Abstract types: Interfaces, Unions
Authentication/Authorization
Error handling

Schema Loading and Validation
Directives

Aliasing of field names

v

v

v

v

v

Once upon a time...

v

ShopGun’s mission: index the worlds shopping data
Shopping data: Semi-structured data set

Think Time Zones and Calendars

Densely populated dataset, many links

v

v

v

How do we create an API for such a data model?

State

We started with some analysis:
» Have existing HTTP/1.1 API
» HTTP/1.1 or HTTP/2 ng?
» Falcor?
» GraphQL?

Ended with GraphQL: heaviest solution but also solves
our problems.

What are our major problems in the current API?

>

>

Multiple clients: Each client needs different data

Some clients use typed languages, some use untyped
languages

Many obvious type errors occur and slows
development

The data evolves over time, and requires lots of
server-side tuning

Documentation is added ad-hoc to the API

Request/Response structure is unclear and client
developers spend time adapting

GraphQL: Initial Commit

v

Created by Facebook in 2012, public (draft) spec in
2015

Used on Android (Java), iOS (Obj-C), Web (Javascript)
Can be used to replace (RESTful) web services
Client/Server Query Language

Some ideas from Armstrong’s UBF are in there

Often JSON output, but isn’t bound to JSON

v

v

v

v

v

GraphQL Major features we like

» There is a schema-definition of data (contract)

» The schema is checked for internal consistency
(contract checking)

» Client declares what it wants through query
(declarative)

» Client declarations must explicitly mention the data
wanted in the request

» The server handles and processes the queries (query
execution)

» The schema is fully typed

» An request with a (non-coercible) type error is
rejected

» A response with a type error is coerced into a valid
response

» The server allows introspection queries on the
meta-structure of the contract (automatic discovery)

Note: These things solves our current major problems.

Example

Input (GraphQL): Output (JSON):
query Planet { {
node(id: "UGxhbmVOOjE=") { "data": {
. on Planet { "node": {
id "id": "UGxhbmVOOjE=",
name "name": "Tatooine",
orbitalPeriod "orbitalPeriod": 304
} }
} }
} }

» Only requested fields are returned
» Must request all fields
» Output structure reflects input structure

Example

query Q { !
room(id: "cm9vbToz") {
description
exits {
direction
room {
id
description
}
}
}
}

}

room": {
"description": "Dungeon Entrance",
"exits": [
{
"direction": "north",
"room": {
"description": "A dark tunnel",
"id": "cm9vbTox" } },
{
"direction": "secret_passage",
"room": {
"description":
"In a secret passage",
"id": "cm9vbToy" } 1}]

» Schema defines if a field is a scalar or object
» Schema defines if a field is composite: (array,

non-null)

Our current APl responds slowly at times, due to the
round-trip time between the client and the server.
Especially on mobile phones with bad connectivity.

» How do we solve this?

v

v

v

v

One query, all operations happen on the server side

Round trip time is between servers, often a few
milliseconds at most

Lower latency achieved as a result
Can avoid lots of “boiler plate” endpoints

Move most “looping” in RESTful services to the
GraphQL execution engine

Fragments

query Q {
monster(id:"...") {
...MonsterFrag
}
room(id:"...") {
contents {
...MonsterFrag
}
}
}

fragment MonsterFrag on Monster {
id
name

hitpoints
+

» Fragments allow concise reference to fields

» Fragments also provide “downcasting” (contents
“can” be a monster)

Fragments (2)

v

Clients build a fragment for each of their Ul elements
Throws every fragment they got at the server

Server performs “field collection” to merge the
fragments into one query

v

v

Clients are free to use these features or not
Clients can evolve at different pace

v

v

Parameterized queries

query Q($monsterId: Id!) {
monster (id: $monsterId) {
...MonsterFrag
}
}

Parameterize Q so it can be reused again and again
Query document contains 50-60 queries. You select
one query by its name and provide its parameters
Arguably safer once you lock down the query
document in production

Maximally flexible in development, execution of
“stored procedures” in production

v

v

v

v

Mutations

mutation NewMonster { "introduceMonster": {
introduceMonster (input: "clientMutationId": "123",
{clientMutationId: "123", "monster": {
name: "Succubus", "id": "bW9uc3Rlcjoz",
hitpoints: 24, "name": "Succubus"
color: "#bbbb00"}) { ¥
clientMutationId }
monster {
id
name
}
}
}

» Changes are through mutations

» A mutation is like a query (but the server handles it
differently)

» Note input objects!

What you have seen until now

v

The queries are from GraphQL test cases
There is a GraphQL server written in Erlang

There is a complete tutorial implementing a database
for Star Wars™ entities.

The tutorial is backed by an in-memory, disk-backed
persistent mnesia instance

v

v

v

DEMO(!!)

Server-side

» We have a parser for typical GraphQL specifications
» You then map Erlang modules to schema types
» Creates relationship between type and code

%% In Schema spec:

type Planet implements Node {
id : ID!
name : String
diameter : Int
rotationPeriod : Int
orbitalPeriod : Int

}

%% In Erlang code:
#{ 'Planet' => sw_core_planet, ... }

Erlang Implementation
Insight: The GraphQL system is a programming language

» Turn GQL query documents into (optimized) query
plans

» Currently about 1/3 of the official de-facto Node.js
implementation

» Almost feature complete

» Many other engines use an Object-Oriented visitor
pattern scheme. We thought we could use a
functional approach

Type Check / Validate

/ AsT2 — Execute o pocii

Query —Lex/Parse - aor

Parameters Type Check Elab Params

Lexing and Parsing

» Standard Erlang lexer generator leex
» Could be hand rolled
» Not on the critical path

Elaboration

v

Trick from Standard ML compilers (type inference,
defunctorization, phase splitting etc)

Elaborate the query by annotating schema types
Makes the later stages far easier to write
Not on the critical path

v

v

v

Type Check and Validation

» Fairly standard type checker

» Validator steps further verifies query document
correctness for common mistakes.

» Not on the critical path

» Note: digression from the spec—Push more things to
the type checker where it belongs. Push more to the
elaborator where it belongs.

Execution

» Runs the query
» On the critical path!

» Uses user-supplied “resolver” modules to resolve the
actual data query.

» Resolvers can be backed any code you want

» Note: we resolve by modules whereas everyone else
resolves by functions. (Pattern matching FTW!)

Resolver example: Planets

execute(_Ctx, #planet { id = PlanetId } = Planet, Field, Args) ->
case Field of
<<"id">> -> {ok, sw_core_id:encode({'Planet', Planet#planet.id})};
<<"edited">> -> {ok, Planet#planet.edited};
<<"climate">> -> {ok, Planet#planet.climatel};
<<"surfaceWater">> -> {ok, Planet#planet.surface_water};
<<"name">> -> {ok, Planet#planet.name};
<<"diameter">> -> {ok, integer (Planet#planet.diameter)};
<<"rotationPeriod">> -> {ok, integer(Planet#planet.rotation_period)};

end

Generic resolver:

execute(_Ctx, Obj, Field, _Args) —->
{ok, maps:get(Field, Obj, null)}.

Performance

» Only parameter checking and execution is time
critical

» execution, even for large queries are measured in us,
usually in the 5-10 range

» Fetching data is measured in ms and some times
much higher

» Your efficiency kernel is likely to be in data fetching

» Allows our code to be cleaner as efficiency isn’t that
important

» Can really play Erlang’s concurrency strength here

Further Work

v

Introduce a small functional language as the IR
Translate GraphQL to IR, type check IR

Hunch: This is way easier

» Type system obviously has modes/polarity in it

Want to formalize type system in Coq/Agda/Twelf at
some point (Twelf is alluring if we manage to build a
A-calc based IR)

QuickCheck approaches are obvious for testing as
well

v

v

v

v

Further Work (2)

» Some validations are still missing

» The code is somewhat mature, but has failing corner
cases

» Concurrent/Parallel query execution is not yet in.
Foci: correctness first

» Some older ideas in the system can be cut out

» Build a dedicated handler for Cowboy (awaits Cowboy
2.0)

Wanna try it?

» Code is at
https://github.com/shopgun/graphql-erlang

» Tutorial is at https:
//github.com/shopgun/graphql-erlang-tutorial

» Tutorial can be viewed at https:
//shopgun.github.io/graphql-erlang-tutorial/

https://github.com/shopgun/graphql-erlang
https://github.com/shopgun/graphql-erlang-tutorial
https://github.com/shopgun/graphql-erlang-tutorial
https://shopgun.github.io/graphql-erlang-tutorial/
https://shopgun.github.io/graphql-erlang-tutorial/

QUESTIONS?

What went right

v

Write a tutorial early

» Documentation forces specification

Iterate the solution. The current one is iteration 3
Don’t care about efficiency early

v

v

Subscriptions

» Method to subscribe to updates on an object

» Rather new functionality, not yet part of the draft
spec

» Works just like a mutation, however, trivially
implemented

Authentication

Pass around a context to each resolver.

Store Authentication/Authorization info in the
context.

Write the resolver such that it inspects the context for
auth information.

special objects: me, viewer,

v

v

v

v

