
GraphQL Erlang

Jesper Louis Andersen

jesper.louis.andersen@gmail.com

ShopGun

June 8, 2017

Overview:

▶ Background

▶ GraphQL Itself

▶ The implementation

Not covered

I can’t cover everything. A list of things which has a story

in GraphQL, but I skip:

▶ Subscriptions

▶ Abstract types: Interfaces, Unions

▶ Authentication/Authorization

▶ Error handling

▶ Schema Loading and Validation

▶ Directives

▶ Aliasing of field names

▶ …

Once upon a time…

▶ ShopGun’s mission: index the worlds shopping data

▶ Shopping data: Semi-structured data set

▶ Think Time Zones and Calendars

▶ Densely populated dataset, many links

How do we create an API for such a data model?

State

We started with some analysis:

▶ Have existing HTTP/1.1 API

▶ HTTP/1.1 or HTTP/2 ng?

▶ Falcor?

▶ GraphQL?

Ended with GraphQL: heaviest solution but also solves

our problems.

What are our major problems in the current API?

▶ Multiple clients: Each client needs different data

▶ Some clients use typed languages, some use untyped

languages

▶ Many obvious type errors occur and slows

development

▶ The data evolves over time, and requires lots of

server-side tuning

▶ Documentation is added ad-hoc to the API

▶ Request/Response structure is unclear and client

developers spend time adapting

GraphQL: Initial Commit

▶ Created by Facebook in 2012, public (draft) spec in

2015

▶ Used on Android (Java), iOS (Obj-C), Web (Javascript)

▶ Can be used to replace (RESTful) web services

▶ Client/Server Query Language

▶ Some ideas from Armstrong’s UBF are in there

▶ Often JSON output, but isn’t bound to JSON

GraphQL Major features we like

▶ There is a schema-definition of data (contract)

▶ The schema is checked for internal consistency

(contract checking)

▶ Client declares what it wants through query

(declarative)

▶ Client declarations must explicitly mention the data

wanted in the request

▶ The server handles and processes the queries (query

execution)

▶ The schema is fully typed

▶ An request with a (non-coercible) type error is

rejected

▶ A response with a type error is coerced into a valid

response

▶ The server allows introspection queries on the

meta-structure of the contract (automatic discovery)

Note: These things solves our current major problems.

Example

Input (GraphQL):
query Planet {

node(id: "UGxhbmV0OjE=") {
... on Planet {

id
name
orbitalPeriod

}
}

}

Output (JSON):
{

"data": {
"node": {

"id": "UGxhbmV0OjE=",
"name": "Tatooine",
"orbitalPeriod": 304

}
}

}

▶ Only requested fields are returned

▶ Must request all fields

▶ Output structure reflects input structure

Example

query Q {
room(id: "cm9vbToz") {

description
exits {

direction
room {

id
description

}
}

}
}

"room": {
"description": "Dungeon Entrance",
"exits": [
{
"direction": "north",
"room": {
"description": "A dark tunnel",
"id": "cm9vbTox" } },

{
"direction": "secret_passage",
"room": {
"description":

"In a secret passage",
"id": "cm9vbToy" } }]

}

▶ Schema defines if a field is a scalar or object

▶ Schema defines if a field is composite: (array,

non-null)

Our current API responds slowly at times, due to the

round-trip time between the client and the server.

Especially on mobile phones with bad connectivity.

▶ How do we solve this?

▶ One query, all operations happen on the server side

▶ Round trip time is between servers, often a few

milliseconds at most

▶ Lower latency achieved as a result

▶ Can avoid lots of “boiler plate” endpoints

▶ Move most “looping” in RESTful services to the

GraphQL execution engine

Fragments

query Q {
monster(id:"...") {

...MonsterFrag
}
room(id:"...") {

contents {
...MonsterFrag

}
}

}

fragment MonsterFrag on Monster {
id
name
hitpoints

}

▶ Fragments allow concise reference to fields

▶ Fragments also provide “downcasting” (contents

“can” be a monster)

Fragments (2)

▶ Clients build a fragment for each of their UI elements

▶ Throws every fragment they got at the server

▶ Server performs “field collection” to merge the

fragments into one query

▶ Clients are free to use these features or not

▶ Clients can evolve at different pace

Parameterized queries

query Q($monsterId: Id!) {
monster(id: $monsterId) {

...MonsterFrag
}

}

▶ Parameterize Q so it can be reused again and again

▶ Query document contains 50-60 queries. You select

one query by its name and provide its parameters

▶ Arguably safer once you lock down the query

document in production

▶ Maximally flexible in development, execution of

“stored procedures” in production

Mutations

mutation NewMonster {
introduceMonster(input:

{clientMutationId: "123",
name: "Succubus",
hitpoints: 24,
color: "#bbbb00"}) {

clientMutationId
monster {

id
name

}
}

}

"introduceMonster": {
"clientMutationId": "123",
"monster": {

"id": "bW9uc3Rlcjoz",
"name": "Succubus"

}
}

▶ Changes are through mutations

▶ A mutation is like a query (but the server handles it

differently)

▶ Note input objects!

What you have seen until now

▶ The queries are from GraphQL test cases

▶ There is a GraphQL server written in Erlang

▶ There is a complete tutorial implementing a database

for Star Wars™ entities.

▶ The tutorial is backed by an in-memory, disk-backed

persistent mnesia instance

DEMO(!!)

Server-side

▶ We have a parser for typical GraphQL specifications

▶ You then map Erlang modules to schema types

▶ Creates relationship between type and code

%% In Schema spec:
type Planet implements Node {

id : ID!
name : String
diameter : Int
rotationPeriod : Int
orbitalPeriod : Int
...

}

%% In Erlang code:
#{ 'Planet' => sw_core_planet, ... }

Erlang Implementation
Insight: The GraphQL system is a programming language

▶ Turn GQL query documents into (optimized) query

plans

▶ Currently about 1/3 of the official de-facto Node.js

implementation

▶ Almost feature complete

▶ Many other engines use an Object-Oriented visitor

pattern scheme. We thought we could use a

functional approach

Query ASTLex/Parse

AST2

Elaborate

Type Check / Validate

ResultExecute

Parameters Elab ParamsType Check

Lexing and Parsing

▶ Standard Erlang lexer generator leex

▶ Could be hand rolled

▶ Not on the critical path

Elaboration

▶ Trick from Standard ML compilers (type inference,

defunctorization, phase splitting etc)

▶ Elaborate the query by annotating schema types

▶ Makes the later stages far easier to write

▶ Not on the critical path

Type Check and Validation

▶ Fairly standard type checker

▶ Validator steps further verifies query document

correctness for common mistakes.

▶ Not on the critical path

▶ Note: digression from the spec—Push more things to

the type checker where it belongs. Push more to the

elaborator where it belongs.

Execution

▶ Runs the query

▶ On the critical path!

▶ Uses user-supplied “resolver” modules to resolve the

actual data query.

▶ Resolvers can be backed any code you want

▶ Note: we resolve by modules whereas everyone else

resolves by functions. (Pattern matching FTW!)

Resolver example: Planets

execute(_Ctx, #planet { id = PlanetId } = Planet, Field, Args) ->
case Field of

<<"id">> -> {ok, sw_core_id:encode({'Planet', Planet#planet.id})};
<<"edited">> -> {ok, Planet#planet.edited};
<<"climate">> -> {ok, Planet#planet.climate};
<<"surfaceWater">> -> {ok, Planet#planet.surface_water};
<<"name">> -> {ok, Planet#planet.name};
<<"diameter">> -> {ok, integer(Planet#planet.diameter)};
<<"rotationPeriod">> -> {ok, integer(Planet#planet.rotation_period)};
...;

end

Generic resolver:
execute(_Ctx, Obj, Field, _Args) ->

{ok, maps:get(Field, Obj, null)}.

Performance

▶ Only parameter checking and execution is time

critical

▶ execution, even for large queries are measured in 𝜇s,
usually in the 5-10 range

▶ Fetching data is measured in ms and some times

much higher

▶ Your efficiency kernel is likely to be in data fetching

▶ Allows our code to be cleaner as efficiency isn’t that

important

▶ Can really play Erlang’s concurrency strength here

Further Work

▶ Introduce a small functional language as the IR

▶ Translate GraphQL to IR, type check IR

▶ Hunch: This is way easier

▶ Type system obviously has modes/polarity in it

▶ Want to formalize type system in Coq/Agda/Twelf at

some point (Twelf is alluring if we manage to build a

𝜆-calc based IR)

▶ QuickCheck approaches are obvious for testing as

well

Further Work (2)

▶ Some validations are still missing

▶ The code is somewhat mature, but has failing corner

cases

▶ Concurrent/Parallel query execution is not yet in.

Foci: correctness first

▶ Some older ideas in the system can be cut out

▶ Build a dedicated handler for Cowboy (awaits Cowboy

2.0)

Wanna try it?

▶ Code is at

https://github.com/shopgun/graphql-erlang
▶ Tutorial is at https:

//github.com/shopgun/graphql-erlang-tutorial
▶ Tutorial can be viewed at https:

//shopgun.github.io/graphql-erlang-tutorial/

https://github.com/shopgun/graphql-erlang
https://github.com/shopgun/graphql-erlang-tutorial
https://github.com/shopgun/graphql-erlang-tutorial
https://shopgun.github.io/graphql-erlang-tutorial/
https://shopgun.github.io/graphql-erlang-tutorial/

QUESTIONS?

What went right

▶ Write a tutorial early

▶ Documentation forces specification

▶ Iterate the solution. The current one is iteration 3

▶ Don’t care about efficiency early

Subscriptions

▶ Method to subscribe to updates on an object

▶ Rather new functionality, not yet part of the draft

spec

▶ Works just like a mutation, however, trivially

implemented

Authentication

▶ Pass around a context to each resolver.

▶ Store Authentication/Authorization info in the

context.

▶ Write the resolver such that it inspects the context for

auth information.

▶ special objects: me, viewer, ….

