
ERLANG
MICRO-SERVICES
WITH ALL THE BUZZWORDS

Chad Gibbons
Sr. Director, Security Engineering
Erlang User Conference 2017

What’s this all about?

Micro-service

REST APIs

Pub/Sub Messaging

Cloud

DevOps

Continuous Integration and
Deployment

Software-as-a-Service

Multi-tenant

Big Data

CONTEXT
SETTING

Who is Alert Logic?

Security-as-a-Service Solution

-Monitor and Ingest customer data – lots of it

-Analyze and Detect Security Vulnerabilities and Incidents

-Security Operations Center expert analysis and guidance

Alert Logic Engineering History

Early Days: 2002 - 2005
-Startup / Integration Mode
-Database-focused integration

Growing up – 2005 - 2011
-Log Management feature added
-Highly scalable data ingestion and search platform

Expansion – 2011 - 2013
-Cloud explosion
-Services-based applications

We Wanted a New Approach

Dramatically increase quality and capabilities

-Provide an architectural foundation for everything we build

-Define a new engineering culture

Starting Over

Distributed, micro-services architecture

Focus on the interfaces: HTTP APIs and pub/sub messaging

Recognize Conway’s Law: let teams be small, focused, and responsible
for their work

Mandate as little as possible; encourage and make the best path easy

Document and follow a set of design principles and use best practices

DESIGN
PRINCIPLES

APIs

Everything is an API

-Every service provides a REST API for integration and monitoring

-Canonical API paths
o https://<public-api-endpoint>/<service-name>/<API-version>/[account-ID]/<resource>

o https://api.example.alertlogic.com/aims/v1/67000001/users

Every API is Public

Every API is considered public by default

No backdoor APIs for our User Interfaces

API Documentation and consistency considered best practice for
every service

API Documentation within the Product UI

API Documentation Example

Pervasive AAA

Pervasive Authentication, Authorization, and Auditing

-ALL API calls are authenticated, authorized, and audited

-Provided by the service framework software layer

-Permission strings defined within the services themselves
o service:[account-ID]:operation:object

-Every user, and every service, has its own identity

Example Permissions

%%---
%% ticketmaster service permissions
%%
required_permission(post, [AccountId, <<"ticket">>], _Req) ->

<<"ticketmaster:", AccountId/binary, ":create:ticket">>.

%%---
%% otto service permissions
%%
required_permission(get, [<<"deployment">>], _) ->

<<"otto::view:deployment">>;

required_permission(post, [<<"deployment">>], _) ->
<<"otto::manage:deployment">>;

No Web Server

There is no web application server

- JavaScript-based UI

-Content provided by CDN (AWS CloudFront) and not a web server

-No business rules within the UI

-Only public API access for the UI

Automated Deployment

100% automated deployment in AWS, of 100% of the environment

-AWS CloudFormation used as a basis for everything

-No shortcuts

Service CloudFormation

"cfnStackTicketmaster": {
"service": "ticketmaster",
"ami_version": "ticketmaster/alertlogic/v1.4.1",
"depends_on": [
"cfnStackRabbitMQ",
"cfnStackAIMS",
"cfnStackTableau"

],
"security_groups": [
"cfnStackRabbitMQ.sgRabbitMQClient",
"cfnStackTableau.sgTableauClient"

],
"iam_role": "cfnStackIam.iamRoleBackendServer",
"iam_profile": "cfnStackIam.iamInstanceProfileBackendServer"

}

Continuous Deployment

Release small, testable, loosely-coupled components into
production

-One of the most positive improvements I’ve seen in my career

Deployment Pipeline Release Lifecycle

Code	Commit	to	
GitHub

Pull Request

Service Upgrades

service	
v1.0.0

service
v1.0.0

service	
v1.0.0

service
v1.0.0

service
v1.1.0

service
v1.1.0

service	
v1.1.0

service
v1.1.0

Step	1
Old	&	
Stable

Step	2	
Upgrade

Step	3	
New	&	
Stable

Infrastructure

Avoid operating custom infrastructure

- Leverage AWS services when possible

-Running our own infrastructure not cost effective nor a key competency

Minimize Configuration

Minimize or eliminate configuration

-Design services to self-configure and learn from the environment

-Service Discovery!

Services Find Each Other

-Dynamic service end-points

Service Discovery

Log Data Mutations

Log every time something in the system changes

- Leverage Kinesis to record every time a resource changes or a service
event occurs

-Publish state changes to message bus

Dynamic Scalability

Scale dynamically and manage services per-customer

-API paths include customer account IDs, allowing intelligent routing of calls
to specific service instances

-Shared-nothing services preferred for easy auto-scaling

Metrics and Monitoring

Constantly evaluate service stability, availability, and performance

-Development team review of metrics key

-Metrics and monitoring becomes part of the engineering lifecycle

DevOps-Focused Dashboards

Ownership Culture

Focused teams with long-term ownership of development, test, and
production

REAL-WORLD

Deployment Architecture

services services

service
discovery service

discovery

rabbitmq rabbitmq

us-east-1a us-east-1c

Amazon
DynamoDB

Amazon	
Kinesis

Elastic	Load	
Balancing

service	routing	
proxy

service	routing	
proxy

api.example.alertlogic.com

Amazon
Route 53

Lessons Learned – Service Discovery

Service Discovery is hard!

-Avoid doing this yourself

- Leverage existing solutions when possible, such as Netflix’s Eureka

Lessons Learned - AWS

High-availability and Disaster Recovery must be designed into every
system

AWS Cost Management is an Engineering Requirement

Use Containers!

Lessons Learned - Service Composition

How big should micro-services be?

-We settled for services that own a specific data resource

-Composite services a necessity as the system grows

Lessons Learned - Culture

Great culture doesn’t happen without effort

Cultural and Engineering change is politics – don’t avoid it

Lessons Learned - Erlang

What about Erlang?

-A great choice for services

-But, community support around many libraries minimal

-AWS library support provided by https://github.com/erlcloud/erlcloud
o Help out!

WRAP UP

Alert Logic Locations

Want More Information?

Company Website: http://www.alertlogic.com/

E-mail: cgibbons@alertlogic.com
dcgibbons@gmail.com

LinkedIn: https://www.linkedin.com/in/dcgibbons/

Twitter: @dcgibbons

Thank you.

