
Ditching	the	Data	Center:	
How	to	Stop	Worrying	and	Love	the	Edge	

Peter	Van	Roy	
Université	catholique	de	Louvain	
Coordinator,	LightKone	project	

	
June	8-9,	2017	

Erlang	User	Conference	
Stockholm,	Sweden	



Context:	LightKone	and	SyncFree	

•  LightKone	H2020	project	(2017-2019)		
lightkone.eu	
–  Lightweight	computaMon	for	networks	

at	the	edge	
–  Partners:	UCL,	UPMC/INRIA,	INESC	TEC,	

TUKL,	NOVA	ID,	Scality,	Gluk,	UPC/Guifi,	
Stritzinger	

•  SyncFree	FP7	project	(2013-2016)	
syncfree.lip6.fr	
–  Large-scale	computaMon	without	

synchronisaMon	
–  Partners:	INRIA,	Basho,	Trifork,	Rovio,	

UNL,	UCL,	Koç,	TUKL	



Greed	–	for	lack	of	a	beNer	word	–	is	good!	

–	Gordon	Gekko,	Wall	Street	(1987)	



Greed	–	for	lack	of	a	beNer	word	–	is	good!	

–	Gordon	Gekko,	Wall	Street	(1987)	Failure	



Overview	
•  “Failure	is	good”	philosophy	
•  Convergent	computaMon	

–  Lasp	language	
–  ExperimenMng	with	Lasp	

•  How	does	it	work?	…	a	lifle	bit	of	theory	
–  Convergent	consistency	
–  Convergent	data	structures:	CRDTs	
–  Hybrid	gossip	communicaMon	

•  Where	we	are	going	
–  Lasp	today	and	tomorrow	
–  SynchronizaMon-free	services	for	edge	compuMng	



Failure	is	good	

•  How	can	failure	be	good?	
–  Nodes	go	offline	to	save	power	(low-power	systems)	
–  Networks	go	down	or	parMMon	(low-power	systems)	

–  Using	low-cost	nodes	that	fail	under	stress	(heat)	reduces	costs	
–  Networks	grow	and	shrink,	nodes	come	and	go	
–  Hardware	and	sojware	upgrades	diffuse	through	the	system	
–  Sojware	rejuvenaMon	(periodic	restart)	…	like	living	organisms!	
–  And	we	are	not	yet	talking	about	crashes	and	sojware	bugs!	

•  Don’t	fight	failure,	accept	it	as	normal	
–  Use	computaMon	and	communicaMon	models	that	live	with	failure	



Living	with	failure	

•  Convergent	computaMon	
– New	informaMon	generalizes	past	informaMon	
–  ComputaMon	is	always	converging	to	a	result	
– Dropped,	delayed,	or	reordered	messages	are	ok	
–  Very	lifle	synchronizaMon	between	nodes	is	needed	

•  Hybrid	gossip	communicaMon	
–  Efficient	communicaMon	in	dynamic	networks	
– Nodes	keep	track	of	neighbors	as	network	changes	
–  CommunicaMon	keeps	working	even	if	most	nodes	fail	



Natural	match	

•  Convergent	computaMon	is	naturally	tolerant	
to	node	and	communicaMon	problems	on	edge	
networks	
–  Network	parMMons	
– Message	loss	and	reordering	

–  Nodes	going	offline	and	online	
–  Nodes	crash	

May	slow	down	convergence;	
no	other	error	is	possible	

Correct	as	long	as	state	
exists	on	at	least	one	node	



The	big	quesWon	

•  Convergent	computaMon	looks	very	nice	
•  But!	
–  Can	it	be	implemented	efficiently?	
–  Is	it	easy	to	program?	

•  As	we	will	see,	the	answer	to	both	quesMons	is	a	
big	yes	
– Our	research	iniMally	went	in	the	opposite	direcMon:	
we	started	by	invesMgaMng	programming	with	weak	
synchronizaMon	models	and	we	arrived	at	convergent	
computaMon	



Convergent	data	is	used	today	

•  Many	companies	are	already	using	convergent	data	
structures	
–  The	following	companies	are	using	CRDTs	
–  Convergent	computaMon	is	sMll	a	research	topic	



Convergent	computaWon	
(Lasp)	



•  Lasp	is	a	programming	language	for	wriMng	convergent	
computaMons	

•  Let	us	declare	two	sets	and	connect	them	with	a	map	
(code	fragment	using	Erlang	syntax)	
	
	
	
	
S1=declare(set),  
bind(S1, {add, [1,2,3]}),  
S2=declare(set),  
map(S1, fun(X) -> X*2 end, S2).  

Simple	Lasp	program	

12	

S1	 S2	Map	



How	Lasp	executes	

•  A	Lasp	program	is	a	graph	of	data	structures	connected	by	
operaMons	
–  Data	structures	S1	and	S2	are	passive	
–  OperaMon	Map	is	an	acMve	process	

•  If	you	update	S1	by	removing	an	element,	the	map	will	
update	S2	by	removing	a	mapped	element	
–  ExecuMon	is	funcMonal	dataflow	programming	

•  This	looks	simple,	but	there	is	more	than	meets	the	eye!	

S1	 S2	Map	



Lasp	is	convergent	

•  Lasp	data	structures	are	designed	to	be	fault	tolerant	
–  They	are	replicated	and	maintain	consistency	between	
replicas	

•  Lasp	data	structures	are	designed	to	be	convergent	
–  An	update	to	one	replica	will	eventually	propagate	to	all	

•  Lasp	programs	are	also	fault	tolerant	and	convergent	
–  The	operaMons	are	built	to	guarantee	this	

•  How	does	it	work?		It	uses	clever	implementaMon	
techniques	supported	by	a	mathemaMcal	theory!	



•  Ads={ad(id:I	counter:C),	…}	
Contracts={contracts(id:I),	…}	
	
product(Ads,	Contracts,	AdsContracts)	
	
F=fun	(A	C)	->	A.id==C.id	end	
filter(AdsContracts,	F,	AdsWithContracts)	

Lasp	program:	Ad	counter	

Ads	

Contracts	

Product	 Ads	×	
Contracts	 Filter	 AdsWith	

Contracts	

All	four	data	
structures	are	sets	
	
Two	processes	
Product	and	Filter	

Ad	counter:	clients	view	adverMsements,	
paid	according	to	number	of	views	

15	



ExperimenWng	with	Lasp	

•  Our	Lasp	prototype	is	implemented	as	a	set	of	
Erlang	libraries	
– We	invite	you	to	try	it	out!	
–  No	special	syntax	yet	
– We	are	acMvely	working	on	improving	it	

•  DocumentaMon	
–  hfps://lasp-lang.org	

•  Code	repository	
–  hfps://github.com/lasp-lang	



How	does	it	work?	
…	a	liNle	bit	of	theory	



A	liNle	bit	of	theory	

•  Convergent	consistency	
–  Rethinking	how	to	build	distributed	systems	
–  Beyond	eventual	consistency	

•  Convergent	data	structures	
–  CRDTs	and	join	semilaxces	
–  Theorem:	CRDTs	saMsfy	convergent	consistency	
–  Theorem:	Lasp	programs	saMsfy	convergent	consistency	

•  Hybrid	gossip	communicaMon	
–  Keeping	the	system	connected	even	at	high	churn	



Convergent	consistency	



Both	easy	and	efficient	
•  One	of	the	holy	grails	of	distributed	systems	is	to	make	

them	both	easy	to	program	and	efficient	to	execute	
•  Strong	consistency	(linearizability)	is	easy	to	program	with	

but	inefficient	
•  Eventual	consistency	(operaMons	eventually	complete)	is	

efficient	to	execute	but	hard	to	program	with	
•  Can	we	get	the	best	of	both	worlds?	

–  Convergent	consistency	aims	to	combine	the	ease	of	strong	
consistency	with	the	efficiency	of	eventual	consistency	

–  How	can	this	work?	



Back	to	basics	

•  A	distributed	system	is	a	collecMon	of	networked	
compuMng	nodes	that	behaves	like	one	system	
(=	consistency	model)	

•  To	make	this	work,	the	nodes	will	coordinate	with	
each	other	according	to	well-defined	rules	
(=	synchronizaMon	algorithm)	

•  For	example,	a	reliable	broadcast	algorithm	
guarantees	the	all-or-none	property:	all	correct	
nodes	deliver	the	message,	or	none	do	



How	far	can	we	go?	

•  We	would	like:	
–  the	consistency	model	to	be	as	strong	as	possible	
(easy	to	program),	and	

–  the	synchronizaMon	algorithm	to	be	as	weak	as	possible	
(efficient	to	execute)	

•  Let’s	try	the	extreme	case:	the	weakest	possible	
synchronizaMon	is	no	synchronizaMon	(no	rules),	
which	enforces	no	consistency	at	all!	
–  So	it’s	clear	we	need	some	synchronizaMon	
–  How	lifle	can	we	get	away	with?	



A	sweet	spot:	SEC	

•  Strong	Eventual	Consistency	(SEC)	
–  The	data	structure	is	defined	so	that	n	replicas	that	receive	
the	same	updates	(in	any	order)	have	equivalent	state	

–  The	only	synchronizaMon	algorithm	we	need	is	eventual	
replica-to-replica	communicaMon	

•  This	consistency	model	is	surprisingly	powerful	
–  It	supports	a	programming	model	that	resembles	a	
concurrent	form	of	funcMonal	programming	

–  It	supports	both	nondeterminism	and	nonmonotonicity	
–  It	has	an	efficient,	resilient	implementaMon	



Consistency	models	redux	
•  Strong	consistency:	the	system	obeys	linearizability	

–  Easy	to	program	but	ojen	inefficient	because	of	synchronizaMon	

•  Eventual	consistency:	the	system	can	support	many	concurrent	
operaMons	«	in	flight	»	
–  Efficient	execuMon	but	hard	to	program	because	of	potenMal	conflicts	

•  Convergent	consistency:	eventual	consistency	plus	SEC	
–  Both	efficient	execuMon	and	easy	to	program	

•  Not	CAP	but	AP	+	♢C	=	available,	parMMon-tolerant,	convergent	



Convergent	data	structures	and	
a	couple	of	theorems	



CRDT	definiWon	
•  How	can	we	build	convergent	data	structures?	

–  One	way	is	the	CRDT:	Conflict-free	Replicated	Data	Type	

•  A	state-based	CRDT		is	defined	as	a	triple	((s1,	…,	sn),m,q):	
–  (s1,	…,	sn)	is	the	configuraMon	on	n	replicas,	with	si∊S	where	S	is	a	join	semilaxce	
–  qi:S⟶V	is	a	query	funcMon	(read	operaMon)	
–  mi:S⟶S	is	a	mutator	(update	operaMon)	such	that	s⊑mi(s)	
–  Periodically,	replicas	update	each	other’s	state:	∀i,j:	si’=si⊔sj	(join)	

•  Why	is	this	convergent?	
–  Because	the	mutator	always	inflates	the	value	and	the	periodic	updates	

always	merge	using	the	join	operaMon		
–  This	ensures	that	all	replicas	will	eventually	converge	to	the	same	value	



Join	semila_ce	
•  The	state-based	CRDT	is	convergent	because	it	is	based	on	

a	join	semilaxce	
•  A	join	semila8ce	is	a	parMally	ordered	set	S	that	has	a	

least	upper	bound	(join)	for	any	nonempty	finite	subset:	
–  ParMal	order:	∀x,	y,	z	∊	S:	

	Reflexivity:	x⊑x	
	AnMsymmetry:	x⊑y	∧	y⊑x	⇒	x=y	
	TransiMvity:	x⊑y	∧	y⊑z	⇒	x⊑z	

–  Least	upper	bound	(join):	∀x,	y	∊	S:		x⨆y	∊	S	
•  z=x⨆y	is	an	upper	bound	
•  All	other	upper	bounds	are	at	least	as	large	as	z	 a	 b	

c	c	=	a	⨆	b	



Observed-Remove	Set	(1)	

•  Many	CRDTs	exist,	too	many	to	present	in	this	talk	
–  We	will	show	just	one:	the	OR-Set	

•  The	OR-Set	supports	both	adding	and	removing	elements	
–  The	outcome	of	a	sequence	of	adds	and	removes	conforms	to	
the	sequenMal	specificaMon	of	a	set	
•  In	a	distributed	system	it’s	more	general:	a	remove	will	remove	all	
elements	in	its	causal	history	

–  In	case	of	concurrent	add	and	remove,	the	add	has	precedence	

•  The	intuiMon	is	to	uniquely	tag	each	added	element	
–  The	tag	is	not	exposed	when	querying	the	set	content	
–  When	removing	an	element,	all	tags	are	removed	



•  Each	replica	stores	triples	(e,A,R)	where	e	is	the	element,	A	is	the	set	of	
adds	and	R	is	the	set	of	removes	

•  If	(e,A,R)	with	A-R≠{}	then	e	is	in	the	set	
–  All	updates	(both	adds	and	removes)	cause	monotonic	increases	in	(e,A,R)	

Observed-Remove	Set	(2)	
add(1)	

add(1)	

(1,{a},{})	

(1,{b},{})	

remove(1)	

(1,{b},{b})	

(1,{a,b},{b})	

(1,{a,b},{b})	

(1,{a,b},{b})	(1,{b},{})	

«	1	is	in	the	set	»	

«	1	is	in	the	set	»	

«	1	is	in	the	set	»	

29	

r1	

r2	

r3	
join	

(1,{a},{})	⊔	(1,{b},{b})	=	(1,{a,b},{b})	



Theorem:	
A	state-based	CRDT	saWsfies	SEC	

•  Strong	Eventual	Consistency	(SEC)	
–  We	assume	eventual	delivery:	an	update	delivered	at	some	correct	

replica	is	eventually	delivered	to	all	correct	replicas	
•  Eventual	replica-to-replica	communicaMon	saMsfies	this	

–  An	object	is	SEC	if	all	correct	replicas	that	have	delivered	the	same	
updates	have	equivalent	state	

•  Theorem:	A	state-based	CRDT	saMsfies	SEC	
–  Proof	by	inducMon	on	the	causal	histories	of	deliveries	at	the	replicas	
–  Proof	given	in	INRIA	Research	Report	RR-7687	

Marc	Shapiro,	Nuno	Preguiça,	Carlos	Baquero,	and	Marek	Zawirski.	
Conflict-free	replicated	data	types.		Technical	Report	RR-7687.		INRIA	(July	2011).	



Theorem:	
A	simple	Lasp	program	saWsfies	SEC	

•  Fault	model:	crash-stop,	at	least	one	replica	correct	
•  Simple	Lasp	program:	single	CRDT	instance	or	a	Lasp	process	

with	inputs	from	simple	Lasp	programs	(directed	acyclic	
graph	where	node	=	CRDT	instance,	edge	=	Lasp	process)	
		

•  Theorem:		A	simple	Lasp	program	saMsfies	SEC	
–  Proof	by	inducMon	on	the	program	graph:	Lasp	program	execuMon	

can	be	reduced	to	a	state-based	CRDT	execuMon	
–  Proof	given	in	Lasp	paper	published	in	PPDP	2015	conference	

Christopher	Meiklejohn	and	Peter	Van	Roy.		Lasp:	A	language	for	distributed,	
coordinaMon-free	programming.		In	Principles	and	Prac?ce	of	Declara?ve	
Programming	(PPDP	2015).		ACM,	184–195	(July	2015).	



Hybrid	gossip	communicaWon	



Hybrid	gossip	algorithms	

•  Hybrid	gossip	algorithms	use	two	layers	(Plumtree	shown)	
–  Efficient	(but	fragile)	broadcast	using	spanning	tree	
–  Resilient	(but	slow)	repair	of	spanning	tree	using	gossip	

•  The	combinaMon	is	both	efficient	and	resilient	

Resilient	repair	of	the	spanning	tree	(gossip	layer)	

Efficient	broadcast	using	spanning	tree	(distributed	algorithm	layer)	



Lasp	communicaWon	layer	
•  Lasp	uses	a	membership	protocol	that	is	a	modified	version	

of	the	HyParView	hybrid	gossip	algorithm	
–  HyParView	maintains	a	connected	network	with	high	reliability	

(almost	100%	connecMvity)	even	when	up	to	90%	of	nodes	fail	
–  HyParView	stores	at	each	node	an	acMve	view	and	a	passive	view	of	

its	neighbors.		The	small	acMve	view	maintains	open	connecMons;	the	
larger	passive	view	is	used	to	increase	reliability.	

–  Lasp	modifies	HyParView	to	work	with	high	churn	

•  The	connected	network	is	used	for	periodic	state	updates	
between	replicas	

João	Leitão,	José	Pereira,	and	Luís	Rodrigues.		HyParView:	A	membership	
protocol	for	reliable	gossip-based	broadcast.	Technical	Report	TR-07-13,	
Universidade	de	Lisboa	(May	2007).	



Where	we	are	going	



Today	and	tomorrow	

•  We	are	using	convergent	consistency,	with	CRDTs	
and	Lasp,	as	the	basis	for	a	programming	system	
and	a	transacMonal	database	
–  Lasp	language,	as	shown	in	this	talk	
–  AnMdote	database,	not	presented	in	this	talk	

•  We	are	applying	the	approach	to	edge	compuMng	
(Internet	of	Things)	in	the	LightKone	project	
–  Taking	nontrivial	computaMons	(analyMcs,	machine	learning)	out	of	

the	data	center	and	execuMng	them	directly	on	the	edge	
	

•  But	convergent	consistency	is	much	more	
–  To	explain,	let	me	tell	a	story	about	synchronizaMon	…	

Today	

Tomorrow	



•  Like	fricMon,	synchronizaMon	is	
both	desirable	and	undesirable	

•  Consider	a	car	on	a	highway	
•  The	car	needs	fricMon:	it	moves	

because	the	Mres	grip	the	road	
•  But	the	car’s	motor	avoids	

fricMon:	the	motor	should	be	as	
fricMonless	as	possible,	otherwise	
it	will	heat	up	and	wear	out	

Parable	of	the	car	(1)	

Synchroniza?on	is	like	fric?on	

Motor	prefers	zero	fricMon	

Tires	need	fricMon	



•  SynchronizaMon	is	only	needed	at	the	
interface	with	the	external	world	

•  Internally,	services	avoid	synchronizaMon	
(they	use	convergent	computaMon)	

Parable	of	the	car	(2)	

Distributed	compuMng	system	

Service	

Service	

Service	
Interface	 Interface	

Consider	a	distributed	
compuMng	system	
made	of	services	
connected	together	

Fric?on	is	only	n
eeded	externally

,	

so	the	?res	can	g
rip	the	road	

Internally,	the	m
otor	avoids	fric?

on	

Internal	
world	

External	
world	



SynchronizaWon-free	services	

•  The	system	has	a	synchronizaMon	boundary	
–  Inside	the	boundary,	all	services	use	weak	
synchronizaMon	

– Strong	synchronizaMon	is	only	needed	at	the	
boundary	
	

•  Services	are	inside	the	boundary	
– Each	service	does	convergent	computaMon	
– Service	API	has	asynchronous	streams,	in	and	out	
	



Conclusion	

•  We	have	introduced	convergent	consistency	and	
programming	with	weak	synchronizaMon 	 		
– We	presented	data	structures	(CRDTs)	and	a	programming	
language	(Lasp)	for	convergent	computaMon	

•  Our	current	work	is	focused	on	edge	compuMng	and	
synchronizaMon-free	services	
–  LightKone	H2020	project	(lightkone.eu)	
–  The	project	uses	Lasp	and	AnMdote	as	starMng	points	


