
Kostis Sagonas & Stavros Aronis

Adventures in Corfu:
Testing and Verifying Chain
Repair Protocols Using
Concuerror

By Eric Gaba (Sting - fr:Sting) - Own work; Data sources:Topography: NASA Shuttle Radar Topography
Mission (SRTM3 v.2) (public domain) https://commons.wikimedia.org/w/index.php?curid=1862405

The adventure of this EUC talk starts with a tweet

“Jack-of-many bit-centric trades, many of them
Erlang flavored.”

Scott Lystig Fritchie

● Sendmail, Inc.

● Gemini Mobile (Hibari)

● Erlang/OTP (DTrace)

● Basho (Riak, Machi)

● VMware (CorfuDB)

Talk Overview
● Chain Replication and Chain Repair

● Systematic Concurrency Testing

● Concuerror (demo)

● Our CORFU case study experience

● Concuerror improvements and their impact

Chain Replication
● A variant of master/slave replication
● Strict chain order!

● Sequential read @ tail.
● Linearizable read @ all.
● Dirty read @ head or middle.

Chain Repair
Let’s say we have chain of three servers

Naive offline repair method:
1. Stop all surviving servers in the chain

2. Copy tail’s update history to the repairing node

3. Restart all nodes with the configuration

HibariDB’s repair is similar but places the repairing node

directly on the chain and reads go to (the old tail)

CORFU
Uses Chain Replication with three changes
1. Responsibility for replication is moved to the client

○ Clients do not communicate with each other

2. CORFU’s servers implement write-once semantics

3. Identifies each chain configuration with an epoch #
○ All clients and servers are aware of the epoch #
○ The server rejects clients with a different epoch #
○ A server temporarily stops service if it receives a

newer epoch # from a client

Chain Repair in CORFU
A repair during epoch #5: a client is writing a new
value to the cluster for a data with old value

There is a race condition here, which can lead
to a violation of the linearizability property

Systematic Concurrency Testing

Stateless Model Checking

Systematic Concurrency Testing
● Assume that you only have one ‘scheduler’:

○ Run an arbitrary execution...

● Then:
○ Backtrack to a point where some other process

could have been chosen to run (pick the latest)…

○ From there, continue with another execution…

● Repeat until all choices have been explored.

-module(foo).
-export([main/0]).

main() ->
 P = self(),
 _P1 = spawn(fun () -> M = bar:good(P) end),
 _P2 = spawn(fun () -> M = bar:bad(P) end),
 receive
 good -> …, ok;
 bad -> …, throw(error);
 _Msg -> …, ok
 after 0 -> …, ok
 end.

-module(bar).
-export([good/1,...,ugly/1]).

good(P) -> ..., P ! good.

bad(P) -> …, P ! bad.

ugly(P) -> ... , P ! ugly.

Concuerror

● A stateless model checking tool that

● … runs a test under all possible interleavings

● … detects abnormal process exits

● … reports all the events that lead to a crash

Systematic =/= Stupid

● Literally “all interleavings”?? Too many!

● Not all pairs of events are in a race

● Each explored interleaving should be
different

Fighting Combinatorial Explosion
Optimal Dynamic Partial Order Reduction

● … monitors dependencies between events

● … explores additional interleavings as needed

● … completely avoids equivalent interleavings

● Dynamic: at runtime, using concrete data

● Optimal: explores only different interleavings

Bounding
Do not explore all interleavings, but only a
selected few based on some bounding criterion

E.g., number of times processes can be
preempted, delayed, etc.

Back to the CORFU adventure

Correctness Properties
Immutability:
➔ Once a value has been written in a key, no

other value can be written to it

Linearizability:
➔ If a read sees a value for a key, subsequent

reads for that key must also see the same
value

Modeling CORFU
Initial model:
● Some (one or two) servers undergo a chain

repair to add one more server to their chain
● Concurrently, two other clients try to write

two different values to the same key
● While a third client tries to read the key twice

Modeling CORFU (cont.)
● Servers and clients are modeled as Erlang

processes
● All requests are modeled as messages

Processes used by the model
○ Central coordinator
○ CORFU log servers (2 or 3)
○ Layout server process
○ CORFU reading client
○ CORFU writing clients (2)
○ Layout change and data repair process

Three Repair Methods
1. Add repair node at the end of chain

2. Add repair node at the start of chain

3. Add repair node in the middle
a. Configuration with two healthy servers
b. Configuration with one healthy server which is

“logically split” into two

Results in vanilla Concuerror

-module(foo2).
-export([main/0]).

main() ->
 P = self(),
 _P1 = spawn(fun () -> M = bar:good(P) end),
 _P2 = spawn(fun () -> M = bar:bad(P) end),
 _P3 = spawn(fun () -> M = bar:ugly(P) end),
 receive
 good -> …, ok
 end,
 receive
 ugly -> …, ok
 end.

-module(bar).
-export([good/1,...,ugly/1]).

good(P) -> ..., P ! good.

bad(P) -> …, P ! bad.

ugly(P) -> ... , P ! ugly.

Optimization (in Concuerror)
● Treating blocking receives, whose message

patterns are all known, specially
● Avoids exploring an exponential number of

"unnecessary" interleavings from sends

In CORFU's initial model, this happened in
the coordinator in code like the following
…
receive
 {done, client_1} -> … % block until client_1 is done
end,
...

Model Refinements
1. Conditional read

Avoid issuing read operations that
are sure to not result in violations

2. Convert layout server process to an
ETS table

Effect of Model Refinements
Method #1 (repair node in the head)

Even without bounding, the error is
found in 19 secs only (212 traces)

Method #3 (repair node in the middle)
Concuerror verifies the method
○ in 48 hours
○ exploring 3 931 412 traces

Conclusion
http://concuerror.com

Go give Concuerror a try!

● Efficient tool to test and verify concurrent
Erlang programs (and algorithms!)

● Usability and practicality are design goals

● Open source, feedback is appreciated

● concuerror --help

Code

github.com/aronisstav

cr-concuerror-experiments

http://concuerror.com

