
Testing an Open Source
Erlang TCP/IP Stack
Thomas Arts

Ulf Norell
Quviq

Erlang User Conference 2017 1

Rick Payne
Otolo Networks

Javier Paris
University of A

Coruna

TCP in Erlang
The Transmission Control Protocol (TCP) is one of
the main protocols of the Internet protocol suite.

TCP provides reliable, ordered, and error-checked
delivery of a stream of octets between applications
running on hosts communicating by an IP
network. Major Internet applications such as the
World Wide Web, email, remote administration, and
file transfer rely on TCP.

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Erlang User Conference 2017 2

An Erlang implementation

https://github.com/javier-paris/erlang-tcpip

Highly concurrent to serve many connections
simultaneous

Performance important, but main goal:
User level stack!

Erlang User Conference 2017 3

Javier Paris
original author

4source: IBM Knowledge
Center

TCP state transition
diagram

A manually written test case
socket:start().
LS = socket:listen(12345).
socket:close(LS).

Testing TCP

API very little: listen, connect, close, ...

Need to test many different scenario's...
 ...but the API does not steer the scenario!

Race conditions may occur: needs testing
Faults may appear (message loss, etc): needs testing

Erlang User Conference 2017 5

passive open active open

Don’t write tests!
Generate them

Erlang User Conference 2017 6

From the
specification

DEMO
Process Registration

Three operations to test:

• register(atom(), pid()) -> true
• unregister(atom()) -> true
• whereis(atom()) -> pid() | undefined

Functions depend on the current state
• register/unregister change it

Testing TCP
Need to test many different scenario's...
 ...but the API does not steer the scenario!

Race conditions may occur: needs testing

Approach:
QuickCheck: generate tests to cover all scenario's
PULSE: generate random schedules to test for
concurrency errors

Erlang User Conference 2017 8

Testing TCP

Erlang User Conference 2017 9

Traditional QuickCheck
approach

almost system level testing

good for finding incompatibilities

not so good for
fault injection and
provoking races

10source: IBM Knowledge
Center

TCP state transition
diagram

listen_args(_) ->
 [port()].

listen_pre(S, [Port]) ->
 not lists:keymember(Port, #socket.port, S#state.sockets).

listen(Port) ->
 tcp_con:usr_listen(Port).

listen_next(S, Var, [Port]) ->
Id = length(S#state.sockets) + 1
NewSocket = #socket{tcp_state = listen,
 port = Port,
 id = Id,
 socket = Var,},
S#state{sockets = S#state.sockets ++ NewSocket}.

11source: IBM Knowledge
Center

TCP state transition
diagram

If we now do "open" from
the client side.... we end up in

'established'.

hard to test

12source: IBM Knowledge
Center

Mocking the
client

syn_pre(S) ->
 [] /= sockets_in_state(S, listen).

syn_args(S) ->
 ?LET(Sock, elements(sockets_in_state(S, listen)),
 [Sock#socket.ip, Sock#socket.port, ip(), port(), uint32(),
 Sock#socket.id]).

syn(Ip, Port, RemoteIp, RemotePort, RemoteSeq, _Id) ->
 Packet =
 #pkt{sport = RemotePort,
 dport = Port,
 seq = RemoteSeq,
 flags = [syn] },
 Data = encode(RemoteIp, Ip, Packet),
 tcp:recv(ip2int(RemoteIp), ip2int(Ip), Data).

13source: IBM Knowledge
Center

Mocking the
client

syn_callouts(S, [_Ip, Port, RemoteIp, RemotePort, RemoteSeq, Id]) ->
 ?MATCH(NewId, ?APPLY(spawn_socket, [])),
 ?SET(NewId, port, Port),
 ?SET(NewId, rip, RemoteIp),
 ?SET(NewId, rport, RemotePort),
 ?SET(NewId, rseq, {RemoteSeq, 1}),
 ?SET(NewId, socket_type, accept),
 ?SET(NewId, parent, Id),
 Sock = get_socket(S, NewId),
 ?MATCH(Packet, ?APPLY(sent, [NewId])),
 ?ASSERT(?MODULE, check_packet, [Packet, '_', Sock#socket.rseq, [ack, syn]]),
 ?SET(NewId, seq, {{call, erlang, element, [#pkt.seq, Packet]}, 1}),
 ?SET(NewId, tcp_state, syn_rcvd).

Specification ! Testing
QuickCheck model: a specification of the diagram

We automatically generate tests to check whether
erlang-tcpip follows the specification

The QuickCheck model is general !
 we can use it for any TCP implementation
 we can fault inject at any possible place

Erlang User Conference 2017 14

Test results
Quviq tests
Otolo Networks fixes bugs

Erlang User Conference 2017 15

test experts
TCP/IP
experts

Race condition in
implementation

Need to run same
test often to find

this

Otolo Networks

Erlang User Conference 2017 16

https://github.com/rickpayne/erlang-tcpip

Fix: 789da2365728321ac8a48ec57bd03e0daff97abd

Erlang User Conference 2017 17

Some other issues found

Erlang User Conference 2017 18

PULSE
PULSE: user level scheduler for Erlang

PULSE is non-deterministic (random scheduling)
PULSE can re-run a schedule (repeatable tests)

When a test fails, PULSE shrinks the schedule to the
minimal number of context switches needed to
provoke the error.

Erlang User Conference 2017 19

Easy to
understand
problem!

How to use PULSE
pulse_instrument:

Instrumentation of the code at compile time
Implemented as parse_transform compiler option

Example:
c(example,[{parse_transform,pulse_instrument}]).

Calls to spawn, link as well as statements ! and
receive, etc are replaced by calls handled by PULSE

Course material 2014 © Quviq AB 20

How PULSE works
• Controls the concurrency

• Only one process is executing at a time
• Records all concurrency events

• Message sending
• Process spawning
• Etc…

• PULSE can switch to executing another process
(simulating context switch) at any time

• We make sure that unlikely scenarios get tested

Course material 2014 © Quviq AB 21

Conclusions
Using QuickCheck and PULSE have shown to be
effective in finding tricky errors.

What's next:
Adding:
RFC 2385 MD5 checksum signing of TCP packets

Contribute with your extensions!

Erlang User Conference 2017 22

