QuviQ

Testing an Open Source
Erlang TCP/IP Stack

Thomas Arts Rick Payne Javier Paris
Ulf Norell Otolo Networks University of A
Coruna

Quviq

Erlang User Conference 2017 I

TCP 1n Erlang Q

The Transmission Control Protocol (TCP) is one of
the main protocols of the Internet protocol suite.

TCP provides reliable, ordered, and error-checked
delivery of a stream of octets between applications
running on hosts communicating by an IP
network. Major Internet applications such as the
World Wide Web, email, remote administration, and
file transfer rely on TCP.

https:/len.wikipedia.org/wiki/Transmission_Control_Protocol

An Erlang implementation Q

Javier Paris
original author

P

https://github.com/javier-paris/erlang-tcpip

Highly concurrent to serve many connections
simultaneous

Performance important, but main goal:

User level stack!

TCP state transition
diagram

recv: SYN
send: SYN,ACK

SYN_RCVD

recv: ACK

Starting Point
CLOSED

appl: passive open N
send:<nothing> N

a;)plz active open
LISTEN send:SYN

passive open -

recv: SYN
send: SYN,ACK

active open
recv: SYN,ACK

» send: <nothing> send: ACK
I
appl: close
send:FIN R ESTABLISHED
I appl: close’- recv: FIN
' sggci;FlN send:ACK passive close
|
) CLOSE_WAIT
v
recv: FIN
[FIN_WAIT_1 l ‘send:ACK ~ "l CLOSING ' appl: close
send:*FlN
recv: ACK recv: FINACK roey: ACK :
send: ACK LAST ACK .@Q"_AC.K. _

send: I<noth|ng>

v
| FIN_WAIT_2 '-

active close

source: IBM Knowledge
Center

|
|
|
|
|
|
|
|
|
or tlmeout ’|
|
|
I
|
|
|
|
|
|
|
|
|
I

send: <nothmg>

TIME) -

recv: FIN
‘'send:ACK ™

Testing TCP Q

API very little: listen, connect, close, ...

passive open active open

A B
Need to test many different scen fin 1, ack 1

...but the API does not ste

ack 2 ack 2
Race conditions may occur: nee ><
Faults may appear (message los:

fin 1, ack 1

Don’t write tests!
(Generate them

From the
specification

DEMO

Process Registration

Three operations to test:
e register(atom(), pid()) -> true

* whereis(atom()) -> pid() | undefined

Functions depend on the current state
 register/unregister change it

Testing TCP

Need to test many different scenario's...

...but the API does not steer the scenario!
Race conditions may occur: needs testing

Approach:
QuickCheck: generate tests to cover all scenario's

PULSE: generate random schedules to test for
CONCUITENCY EITOrS

Testing TCP -

almost system level testing

Traditional QuickChec good for finding incompatibilities

Tutcr § Subject \

[Qunckcheck TCP} " Open, Close, {Subjccr Cont\ r

ll(P Packerts ' Send... ; Open, CloselSend... ;

:__(Through a | i

rate Conn) | [Subjcct TCP/IPJ

not so good for

fault injection and N SR j
pI'OVOkiIlg races Ethernet Frames

Erlang User Conference 2017 9

TCP state transition Starting Point

. CLOSED |[€ = = = e
diagram _
appl: passive open N\
send:<nothing> N
N
LISTEN appl:.actlve open
recv: SYN . send.SYl\l
send: SYN,ACK passive open ‘N
-~ ’\‘
- recv: RST > ‘e
SYN RCVD | e . - 3. ___________ SYN_SENT T

ues operation

recv: state transition taken when segment is received
source: IBM Knowledge send: what is sent for this transition)

Center

Starting Point
CLOSED -

appl: passive open N
send:<nothing> N

TCP state transition
diagram

LISTEN a;:)plz active open

recv: SYN i . send:SYl\l
send: SYN.ACK .~ passive open 2
. , ' ’ \ -
N
< recv: RST -\4
SYN.RCVD | ... _reevSYN . SYN_SENT | .appl:close _
send: SYN,ACK or timeout

active open

i recv: ACK recv: SYN,ACK
» send: <nothing> send: ACK
I

appl: close ESTABLISHED

send:FIN
1

.7

[(R —

~

: appl: close

. send:FIN

! e ’

I -

Y < FIN
recv:
| FIN_WAIT_1 [- ‘send:ACK ™"~ CLOSING

: ~. :
recv: ACK recv: FINACK rgcy: ACK
send: <nothing> send:ACl(send:<nothing>

v
TIME WAIT

1
v
recv: FIN
| FIN_WAIT_2 '— “send:ACK ™"~
active close

———— normal transitions for server

appl: state transition taken when appl. issues operation

recv: state transition taken when segment is received
source: IBM Knowledge send: what is sent for this transition 1

Center

b Starting Point
Mocking the

appl: passive open

Client send:<nothing>
;Lplz active open

recv: SYN send:SYN
send: SYN,ACK

SYN_RCVD

recv: state transition taken when segment is received
source: IBM Knowledge send: what is sent for this transition 2

Center

b Starting Point
Mocking the

appl: passive open

Client send:<nothing>
;Bplz active open

recv: SYN send:SYN
send: SYN,ACK

SYN_RCVD

recv: state transition taken when segment is received
source: IBM Knowledge send: what is sent for this transition 3

Center

Specification =2 Testing

QuickCheck model: a specification of the diagram

We automatically generate tests to check whether
erlang-tcpip follows the specification

The QuickCheck model i1s general !
we can use 1t for any TCP implementation

we can fault inject at any possible place

Q

Test results

Quviq tests

Otolo Networks fixes bugs

Race |

test experts
TCP/IP
experts

—]
Local Remote
lis+en’
SYNV
SYAM-ACK)
(ACk _
Schep'r does not retvm

Erlang User Conference 2017

‘ Local

Remote ’

Race condition in
implementation

Need to run same
test often to find
this

15

Otolo Networks

https://github.com/rickpayne/erlang-tcpip

Erlang User Conference 2017

FIX: 789da2365728321ac8a48ec57bd03e0datt97abd Q

¥ rickpayne / erlang-tcpip ®Owatch~ 1 HStar 0 YFork 4

forked from javier-paris/erlang-tcpip

<> Code Pull requests 1 Projects 0 Wiki Insights ~

Fix race condition on socket:accept() Browse files

Because the queue state was queried and only subscribed if empty this left
a race condition when a connection could arrive in that window.

Found using quickcheck.

Also discovered the listen queue was a single item deep, so the second
process to listen on the socket was overwrote the first, which was lost.
Fix: Rename the observer open_queue to listener_queue and make it a proper
queue. Do not query queue state, just subscribe to the listener queue, and
that returns a waiting socket if there is one already established.

I rickp-branch

Rick Payne committed on 15 Apr 1 parent 25b5c¢31 commit 789da2365728321ac8a48ec57bd@3eddaff97abd
Showing 2 changed files with 50 additions and 27 deletions. Unified | Split ‘
57 HEEN src/tcb.erl View ~
20 MEENEE src/tcp_con.erl View PN

Erlang User Conference 2017 17

Some other 1ssues found Q

Race condition &

Race condition i Simvlraneovs close

Remote

Local Remote

Local Remote

Erlang User Conference 2017

...............

Local

L
close '

Remote

close does not f‘cfv/;'

Local

e

18

PULSE Q

PULSE: user level scheduler for Erlang

PULSE 1s non-deterministic (random scheduling)
PULSE can re-run a schedule (repeatable tests)

When a test fails, PULSE shrinks the schedule to the
minimal number of context switches needed to
provoke the error.

Easy to
understand
problem!

How to use PULSE Q

pulse_instrument:
Instrumentation of the code at compile time

Implemented as parse_transform compiler option

Example:

c(example,[{parse_transform,pulse_instrument}]).

Calls to spawn, link as well as statements / and
receive, etc are replaced by calls handled by PULSE

How PULSE works

 Controls the concurrency
* Only one process is executing at a time

* Records all concurrency events
* Message sending
* Process spawning
e Etc...

 PULSE can switch to executing another process
(stmulating context switch) at any time

* We make sure that unlikely scenarios get tested

Conclusions Q

Using QuickCheck and PULSE have shown to be
effective in finding tricky errors.

What's next:
Adding:
RFC 2385 MD5 checksum signing of TCP packets

Contribute with your extensions!

