ERLANG

ERICSSON

VM features in OTP 20

Kenneth Lundin, Erlang/OTP, Ericsson
Erlang User Conference, Stockholm 2017

\\

VM features in OTP 20

\\

enif select
Intro about NIFs

NIFs are Native Implemented Functions.
Shared library, dynamically linked into the VM
For Integration with existing C-libraries and
for time critical tasks

ENIF API functions give the interface towards
VM internals

enif select
Intro about NIFs

NIFs belong to an Erlang module

a module can contain both erlang functions
and NIFs

The NIF library must be explicitly loaded by
Erlang code in the same module.

All NIFs of a module must have an Erlang
Implementation as well.

\\

enif select
Intro about NIFs

e The ENIF APl is continuously enriched
e enif_select, an interesting newcomer
e A light version of native processes
o setup waiting for external events (on an
FD)
o Message to an Erlang process when an
event occurs

\\

\\

enif select

Can replace the driver concept

Plan to rewrite the inet (tcp/udp/sctp) driver
as NIFs

Plan to rewrite the file driver as NIFs (sendfile
using enif _select), using dirty schedulers
instead of async threads

Compared to drivers, more code can be in
Erlang

Potential to give better performance

en if_SeleCt from the manual

ErINifEnv* env

EriNifEvent event,

enum ErINifSelectFlags mode,

void* obj,

const EriNifPid* pid

ERL_NIF_TERM ref

\\

All terms of type ERL_NIF_TERM belong to an environment of type ErINIifEnv.
All API functions that read or write terms has env as the first function
argument.

the event object. On Unix systems an FD that select/poll can use

type of events to wait for

e ERL NIF_SELECT READ, ERL_NIF_SELECT_WRITE or both
e ERL NIF_SELECT_STOP
e A notification message is sent to the process identified by pid:

{select, Obj, Ref, ready_input | ready_output}

e The notifications are one-shot only.

A resource object obtained from enif_alloc_resource. The purpose of
the resource objects is as a container of the event object to manage its
state and lifetime. A handle is received in the notification message as
Obj.

pid may be NULL to indicate the calling process.

a reference or the atom undefined. Passed as Ref in the notifications

http://erlang.org/doc/man/erl_nif.html#ErlNifEnv
http://erlang.org/documentation/doc-9.0-rc2/erts-9.0/doc/html/erl_nif.html#enif_alloc_resource
http://erlang.org/documentation/doc-9.0-rc2/erts-9.0/doc/html/erl_nif.html#enif_alloc_resource

\\

enif select, example

Erlang C
recv_do(Rsrc, Length, Timeout) -> /* recv_try(Sock, Length, Ref) */
Ref = make_ref(), P static ERL_NIF_TERM recv_try_nif(ErINifEnv* env, int argc,

case recv_try_nif(Rsrc, Length, Ref) of const ERL_NIF_TERM argv])

Bin when is_binary(Bin) -> {
{OK_’ Bin}; got = read(conn->sock,
eagain -> conn->read_bin.data + conn->read_bin.size -
receive conn->read_capacity,
{select, Rsrc, Ref, ready_input} -> length ? length : conn->read_capacity);

recv_do(RsréxLength, Timeout) if (got >= length) {

after Timeout ->
{error, timeout}
end;

else if (errno = EAGAIN && errno '= EWOULDBLOCK) {
res = enif_make_tuple2(env, atom_error,
enif_make_int(env,errno));
goto done;

}

conn->read_waits++;
/* errno is EAGAIN or EWOULBLOCK */

rv =
enif_select(env, conn->sock, ERL_NIF_SELECT_READ,
conn, NULL, argv[2]);

ASSERT(!(rv & ERL_NIF_SELECT_ERROR));

return = atom_eagain;

}

{error, }=Err ->
Err
end.

Public | 2017-06-08 | Page 8

\\

Dirty schedulers

e Has been around as experimental since OTP 17.0

e Named “Dirty” because they run potentially “unclean”
jobs (don’t return timely (<~1 ms) to the scheduler)

e “Dirty” schedulers are separate threads which only runs
potential “dirty” jobs.

e All “normal” schedulers must always be responsive

because of the:

lock free functionality

load balancing between schedulers
soft real time characteristics

O O O O

Public | 2017-06-08 | Page 9

Dirty schedulers

e A large effort in the beginning by Steve
Vinoski (OTP 17)

e Now all loose ends are put together

e Activated as default in OTP 20

\\

10

)

“Dirtl_}/’ schedulers
ow It works

e Two types of dirty schedulers,
o CPU (cpu bound jobs)
o 1O (waiting for IO events)
e A potentially blocking or long running NIF,
can be run on a dirty scheduler by:
o invoking enif _schedule nif
o setting flags in the ErINifFunc entry.
e Automatically used for long GCs

\\

11

"Dirty” Schedulers

Normal Sch 1

CPU bound “dirty” schedulers

Sch N

run queue

1O bound “dirty”
schedulers

1 - 1024, default 10

Async thread pool,
default 10

Public | 2017-06-08 | Page 12

\\

12

Dirty schedulers
in OTP 20

e Defaults:
o One dirty CPU scheduler per normal scheduler
o 10 dirty IO schedulers
e Configurable:
o 1 <= CPU <= normal schedulers
o CPU online/offline can be configured in runtime
o 10O can be configured from 1 to 1024
e “dirty” IO threads intended to replace the async thread
pool used by the file driver
e dirty IO not used by OTP today

Public | 2017-06-08 | Page 13

\\

13

\\

Dirt1y schedulers
in OTP 20 continued

e code purging not blocked by a process that is stuck on a
dirty scheduler.

e |n addition to “dirty” NIFs also support for “dirty” BIFs and
“dirty” GC

e All GCs that potentially will take a long time are now run
on dirty CPU schedulers if enabled.
o heap size and heap fragments > 1 Mb on a 64 bit

(512 kb on 32 bit)

Public | 2017-06-08 | Page 14 14

Dirt1y schedulers
in OTP 20 continued

e erlang:statistics/1 inspecting
scheduler and run queue states has been
changed due to the dirty scheduler support

e configurable stack size for dirty schedulers

\\

15

Enhanced |/O scalabillity

How it works today

First attempt to parallelize
Second attempt (ongoing)
Plan for introduction

\\

16

\\

Enhanced |/O scalabillity

How it works today

The Erlang VM waits for external events on a
FD and using poll/select

Poll/select works with a “poll-set” = the FDs to
wait for

Update of the poll-set is done from any
scheduler and requires a lock

the lock will be a bottleneck if there are many
parallel 1O activities (many processes
sending and receiving from sockets)

17

\\

Enhanced |/O scalabillity

How it works today

» Internal APls which updates the poll-set are
ENIF select and driver select.

» Example:
inet:setopts (Socket, [{active,oncel}])

will result in a driver select

Public | 2017-06-08 | Page 18 18

Enhanced /O s

scalability

\\

today, (OTP 19)
Sch 1 Sch N
Total _Reduction_Count
4 * 4000

()

S

)

S

o

<

S

N ------ /\ check _io
File descriptior 0 1 2 3 4 5 6 7 MaxFD
to p|d{port pid/ | pid/ | pids | pidr | pid/ | pids | piar | pid/ pid/
mapping port port port port port port port port | port

N

~\

Poll set

Public | 2017-06-08 | Page 19

19

\\

Enhanced |/O scalabillity

How it works today continued

» A scheduler will check o when:
— there are no more jobs (empty run_queue)
— based on a total reduction counter for all schedulers
4*MaxRedPerProcess (4000 today)
» Check io
— map from FD to pid or port (update port/pid value)
— check result of poll
— On Linux ppoll or epoll is used (use epoll with +k truelfalse)
where false is default
— ifany FD has triggered an event then lookup corresponding port
or pid and send port_signal (async) or erlang message
(enif _select)

Public | 2017-06-08 | Page 20 20

Enhanced |/O scalabillity

new, first attempt

\\

File descriptior
to pid/port
mapping

Sch 1 Sch N
Total _Reduction_Count
4 * 4000

()

=

()

S

o>

:Q

-

N ------ /\ check _io
oO(1]12 3|4 |5 |6|7 MaxFD
pid/ | pid/ | pid/ | pid/ | pid/ | pid/ | pid/ | pid/ pid/
port port port port port port port port | port

\ Poll set 1 Poll set N /

Public | 2017-06-08 | Page 21

21

\\

Enhanced |/O scalabillity

new , first attempt

» Check_io works the same except that there are several
poll sets, chosen based on scheduler id where the
port/pid is handled.

> Pros

— This reduces the contention and parallel IO performance is very
good

» Cons
— A system with a lot of messages between processes and not so
much |0 get worse performance

» Conclusion
— Not acceptable to degrade performance for systems with low 1O
intensity
>

Public | 2017-06-08 | Page 22

22

Enhanced |/O scalabillity

Latency in us

2608 [

N P

Benchmarks

Ave Latency vz Hum Clients

|

T
-
e
=1
=,
—
L =
i
5

3
R
g

18888 T T T
daaa
6888
4888

kp nultipoll,
kp baseline
kp nultipoll,
kp baseline
kp nultipoll,
kp bazeline

188849
18868
588608
ha83a
Faeea
73888

T
reqfs —+—
reqfs ——
req’s —#
reqfs —H

reqss

reqs —&—

Public | 2017-06-08 | Page 23

58888

188868 1586888 288888 238888 3aBeen

Background clients

358888

488808

\\

23

\\

Enhanced |/O scalabillity
Benchmarks

Requests per second

128808 T T T T T T
kp baseline —+—
kp nultipiot —»—
nkp = iplot —&—
18606088 fﬁﬁJ 3
F 100 clients
4
= 80688 | W .
]
m .
- i
= ol
: A
S 60000 -
A
5 -
o -
|
H P
) 48008 e -
= F
T -
1 4] e
L .
o
28800 .
a H 1 1 1 1 1 1
a 28888 40888 68888 88888 1888848 128888 14888¢

Requests per second goal

Public | 2017-06-08 | Page 24

\\

Enhanced |/O scalabillity

Benchmarks

mnesia mnesia_tpcb tpcb_conflict_ramcopies

MK

| P
T i it .": i -

10K = = — : — r __|. - ;ﬁ : =" g o

9K [

8K

K|

Stones

BK |

oK

4K

3K 2 - - - - -
09Apr 16Apr 23Apr J0Apr 07May 14May 21May
Date

Public | 2017-06-08 | Page 25 25

\\

Enhanced |/O scalabillity

new , first attempt

Analyzis of the degraded performance

With parallel poll-sets the schedulers:
o all sleep in a call to poll

current solution:
o all sleep in a futex (except one)

It is more expensive to wake up from a poll than from a

futex
The work done before and after using poll is also costly
compared to the use of a futex

26

Enhanced |/O scalabillity

new, second attempt

/O thread Sch 1 Sch N
""""""" Total _Reduction_Count
4 * 4000
O
S
O
S
(o)
c
_ S
epoll_wait
File descriptior ol1]2|3]4]|5]|6]7 MaxFD
to pld{port pid/ pid/ pid/ pid/ pid/ pid/ pid/ pid/ pid/
mapping port port port port port port port port | port
poll_ctl
Pollset1 | i PollsetN :

Public | 2017-06-08 | Page 27

\\

\\

Enhanced |/O scalabillity

new , second attempt

e Introduce separate IO thread(s) in addition to the
scheduler threads

e |O threads doing all the wait in epoll_wait

e Check io changed to work with only one kernel poll set
(synchronization handled by Linux kernel)

e the poll set updated with epoll_ctl directly to the
OS-kernel (Linux)

e possibly multiple IO thread(s) calls epoll waity with the
poll _set

e Scheduler threads wait on a futex to be waken up by an
|O thread or other scheduler

Public | 2017-06-08 | Page 28

28

\\

Enhanced |/O scalabillity

new , second attempt

> Pros
— This reduces the contention and parallel |O
performance is very good
— All schedulers wait on a futex which is good
» Cons
— A single 10 thread might become a bottle neck, but
the solution can be expanded to having several IO
threads.
— Update of the single pollset via kernel might cause
contention, but can be worked around by having
several poll sets.

Public | 2017-06-08 | Page 29 29

\\

Enhanced |/O scalabillity
plan for introduction

» Unfortunately we did not make it for OTP 20

» Put on master when OTP 20 is released

» Possibly Introduce as experimental with alternative build
via configure in OTP 20.X or as a separate branch based

on OTP 20

Public | 2017-06-08 | Page 30

30

\\

Constant data not copied

What is “literal” data

Compiler handles “literal” data

Internal representation of constant data
Not copied in internal messages

Still copied to ets tables

when code is purged the literals should be

31

Constant data not copied

example

lit.erl

-module(lit).
-compile(export_all).

value1() ->
{“abc”, ”xyz”, “fge”}.

value2(A,B,C) ->
{A, B, C}.

\ > erlc -S lit.erl

#1it.S is created

Public | 2017-06-08 | Page 32

lit.S

{function, value1, 0, 2}.
{label,1}.
{line,[{location,"lit.erl",5}]}.
{func_info,{atom,lit},{atom,value1},0}.
{label,2}.

{move, {literal,{"abc","xyz","fge"}},{x,0}}.

return.

{function, value2, 3, 4}.
{label,3}.
{line,[{location,"lit.erl",7}]}.
{func_info,{atom,lit},{atom,value2},3}.
{label,4}.
{test_heap,4,3}.
{put_tuple,3,{x,3}}.
{put,{x,0}}.
{put,{x,1}}.
{put,{x,2}}.
{move,{x,3},{x,0}}.
return.

\\

32

ERICSSON

