
ANTI-PATTERNS IN THE
WILD
PAWEL ANTEMIJCZUK & MAARTEN
FADDEGON

OVERVIEW
Common anti-patterns
● Why do they happen?
● What to do about them
● Safe hunting

2

A LITTLE
BACKGROUND
WHY THINGS ARE WHAT THEY ARE

MOTOROLA PRODUCTS

DIMETRA™
TETRA

ASTRO® 25
P25

WAVE™
LTE

4Motorola Solutions Internal / Confidential Restricted

ERLANG IN MSI

5

ERLANG IN MSI

6

• 183000 lines of Erlang code in 531 modules
• 89 gen_fsm
• 104 gen_server

• 71000 lines of Erlang headers
• 7000 lines of C code
• 2 C ports
• 5 Erlang applications (3 releasables for 1 product)

ERLANG IN MSI

7

Many iterations, with different teams of people
1. Prototype, with The Prophet of Erlang
2. Product, with surprised C developers
3. Maintenance, with people enthusiastic about

Erlang

THE COMMON
SPECIMENS
THE ANTI-PATTERNS

THE SHIFTING STATE

9

tail

state modifying
operation

not even the
final form

eye

THE SHIFTING STATE

10

• Immutability can be annoying to the unprepared
• A lot of things can happen in a single state machine

transition
• Complicated protocol in an overcomplicated

machine
• Too much data in the state

LESS RESPONSIBILITY
Too much information stored in the state of
a single process

Example
• Problem: state machine of call controller has counters

in state needed for messages sent to remote monitor
• Solution: create a dedicated process that keeps track

of these counters

However
• Complexity might be inherent
• Untangling can be non-trivial (might introduce defects)

11

ASK WHAT YOU NEED

• Many state changing functions
• do not demand all fields in the state
• do not change all fields in the state

• Example:

• Chain of state passing can be hard to untangle
• Might reveal the “real” state that is needed (here y)

12

fn(my_state, S = #state{x=X1, y=Y1}) ->
 Y2 = f(Y1),
 {X2,Y3} = g(X1, Y2),
 {next_state, my_state, S#state{x=X2, y=Y3}}.

fn(my_state, S1) ->
 S2 = f(S1),
 S3 = g(S2),
 {next_state, my_state, S3}.

HOMEBREW “STATE MONAD”

13

no dependencies

every computation is wrapped
in a (anonymous) function

one kind of operation: takes state and evaluates to new state

ERLANDO STATE MONAD

14

do is expanded
before compilation

an underscore ‘_’ in a right-hand-side
expression is wrapped in an
anonymous function

different kinds of operations

CASE STUDY

15

uses state, only has
side-effect; no return value

computation returning
value of other type
than state …

… demanded by later
computation

easy to mix up one of the many versions of the
state (esp. when adding or removing operations)

ERLANDO STATE MONAD

16

uses state, only has
side-effect; no return value

computation returning
value of other type
than state …

… demanded by later
computation

state is managed by monad, less mistakes

THE LONG CASE

17

case in case

long neck

case in case in
case

case in case in
case in case

secondary case
in case in case
in case clause

incognita

THE LONG CASE

18

• C-leftover for long sequential processing e.g.
validation of a message received

• In C you do not create many small functions
if there’s no reuse

• No way to exit early, so cases keep nesting
• Sometimes cases are duplicated

THE THROWING VALIDATOR

19

Exceptions to interrupt
the control flow

Sequential C-like
processing

Horns

THE THROWING VALIDATOR

20

• Attempt to fix sequential, nested cases
• Kingdom for a return
• Exceptions seemed like a good idea at the time...

CASE STUDY

21

throw used to emulate a
C-like return statement

expression might just be a
sanity check…

… or the expression might
evaluate to a value needed later

HOMEBREW “ERROR MONAD”

22

one type of operation: takes a state
and returns a new state

ERLANDO ERROR MONAD

23

when expression evaluates to {error, <reason>}
then {error, <reason>} is the result
and remaining expressions are not evaluated

SIDE BY SIDE COMPARISON

24

ERLANDO IN PRODUCTION?

25

Clearer code
reduces change
of defects

not part of the Erlang release

uses parse transform and
undocumented language
features

THE MYSTERIOUS API

26

a mysterious
macro

unidentified
process’ API

camouflage
spots

THE MYSTERIOUS API

27

• Macro helps with typos in atom names
• gen_fsm call kind of looks like an API already
• General confusion with processes (which

process executes what code)

THE MYSTERIOUS API

28

• Define
• Your
• APIs

THE ABSOLUTE
COORDINATOR

29

mean stare

gproc lookup

send based
on lookup

THE ABSOLUTE
COORDINATOR

30

• The simplest architecture
• Frees you from thinking about more complex

and more Erlang solutions

THE ABSOLUTE
COORDINATOR

31

• Difficult problem to solve - at the end of the
day, there is only one socket

• Coordinator’s responsibility can be limited
• Multiple processes can talk to each other

directly
• gproc helps solve the problem (but it’s not

free)
• Processes can let each other know their pids

THE MINOR OFFENDERS

32

enormous state
machine

tusks

long single
clause function

THE MINOR OFFENDERS

33

same module
name
everywhere

stripes

THE MINOR OFFENDERS

34

ohgodpleasedon’tcrash

hard
shell

THE MINOR OFFENDERS

35

• More C habits
• Big functions that enclose all functionality,

not making small ones if there is no reuse
• Complicated domain with complicated

protocols
• Easier to make one process than split

properly into several
• Desire for interfaces or virtual classes
• Defend against everything

HUNTING THE
PROBLEMS
GENERAL TOOLS

THE ARSENAL

37

THE REFACTOR
QUICKCHECK

38

• Get the pre-refactor code
• Refactor it
• Mock out all the external calls you must keep

(including the sequence)
• Generate the outputs of all decision points
• Run

THE REFACTOR
QUICKCHECK

39

is_rtp_response_equiv(NumTests) ->
 Collect = fun({Transition, ToState, EndState}, B) ->
 collect({{Transition, ToState}, EndState#state.eqc_exit_path}, B)
 end,
 equiv_ref:check(fun pre_ref_function/1,
 fun post_ref_function/1,
 equiv_generator(),
 fun mocking_setup/0,
 fun mocking_dynamic_setup/1, Collect, NumTests).

THE REFACTOR
QUICKCHECK
• 214 lines in 1 clause in 1 function

• 212 lines
• 3 functions
• 10 clauses for main processing - one for each

scenario
• 0 new defects

40

WRANGLER

• Semi-automated
refactoring

• Reduces risk of
introducing new
mistakes

• Desired refactoring
might not be supported

• Tool can be extended
• learning curve
• is the transformation

correct?

41

source: https://xkcd.com/1319/

ELVIS

• Automated code quality check
• Can check the most obvious things, however can’t

really prevent bad code
• Worth considering e.g. in pull request approval
• New code goes through review
• A lot of old code

42

