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OVERVIEW
Common anti-patterns
● Why do they happen?
● What to do about them
● Safe hunting
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A LITTLE 
BACKGROUND
WHY THINGS ARE WHAT THEY ARE



MOTOROLA PRODUCTS

DIMETRA™
TETRA

ASTRO® 25
P25

WAVE™
LTE

4Motorola Solutions Internal / Confidential Restricted



ERLANG IN MSI
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ERLANG IN MSI
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• 183000 lines of Erlang code in 531 modules
• 89 gen_fsm
• 104 gen_server

• 71000 lines of Erlang headers
• 7000 lines of C code
• 2 C ports
• 5 Erlang applications (3 releasables for 1 product)



ERLANG IN MSI
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Many iterations, with different teams of people
1. Prototype, with The Prophet of Erlang
2. Product, with surprised C developers
3. Maintenance, with people enthusiastic about 

Erlang



THE COMMON 
SPECIMENS
THE ANTI-PATTERNS



THE SHIFTING STATE

9

tail

state modifying 
operation

not even the 
final form

eye



THE SHIFTING STATE
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• Immutability can be annoying to the unprepared
• A lot of things can happen in a single state machine 

transition
• Complicated protocol in an overcomplicated 

machine
• Too much data in the state



LESS RESPONSIBILITY
Too much information stored in the state of 
a single process

Example
• Problem: state machine of call controller has counters 

in state needed for messages sent to remote monitor
• Solution: create a dedicated process that keeps track 

of these counters

However
• Complexity might be inherent
• Untangling can be non-trivial (might introduce defects)
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ASK WHAT YOU NEED

• Many state changing functions
• do not demand all fields in the state
• do not change all fields in the state

• Example:

• Chain of state passing can be hard to untangle
• Might reveal the “real” state that is needed (here y)
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fn(my_state, S = #state{x=X1, y=Y1}) ->
  Y2      = f(Y1),
  {X2,Y3} = g(X1, Y2),
  {next_state, my_state, S#state{x=X2, y=Y3}}. 

fn(my_state, S1) ->
  S2      = f(S1),
  S3      = g(S2),
  {next_state, my_state, S3}. 



HOMEBREW “STATE MONAD”
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no dependencies

every computation is wrapped
in a (anonymous) function

one kind of operation: takes state and evaluates to new state



ERLANDO STATE MONAD
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do is expanded
before compilation

an underscore ‘_’ in a right-hand-side 
expression is wrapped in an 
anonymous function

different kinds of operations



CASE STUDY
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uses state, only has 
side-effect; no return value

computation returning 
value of other type 
than state …

… demanded by later 
computation

easy to mix up one of the many versions of the 
state (esp. when adding or removing operations)



ERLANDO STATE MONAD
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uses state, only has 
side-effect; no return value

computation returning 
value of other type 
than state …

… demanded by later 
computation

state is managed by monad, less mistakes



THE LONG CASE
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case in case

long neck

case in case in 
case

case in case in 
case in case

secondary case 
in case in case 
in case clause 

incognita



THE LONG CASE
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• C-leftover for long sequential processing e.g. 
validation of a message received

• In C you do not create many small functions 
if there’s no reuse

• No way to exit early, so cases keep nesting
• Sometimes cases are duplicated



THE THROWING VALIDATOR
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Exceptions to interrupt 
the control flow

Sequential C-like 
processing

Horns



THE THROWING VALIDATOR
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• Attempt to fix sequential, nested cases
• Kingdom for a return
• Exceptions seemed like a good idea at the time...



CASE STUDY
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throw used to emulate a 
C-like return statement

expression might just be a 
sanity check…

… or the expression might 
evaluate to a value needed later



HOMEBREW “ERROR MONAD”
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one type of operation: takes a state 
and returns a new state



ERLANDO ERROR MONAD
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when expression evaluates to {error, <reason>} 
then {error, <reason>} is the result 
and remaining expressions are not evaluated



SIDE BY SIDE COMPARISON
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ERLANDO IN PRODUCTION?
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Clearer code
reduces change
of defects

not part of the Erlang release

uses parse transform and
undocumented language 
features



THE MYSTERIOUS API
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a mysterious 
macro

unidentified 
process’ API

camouflage 
spots



THE MYSTERIOUS API
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• Macro helps with typos in atom names
• gen_fsm call kind of looks like an API already
• General confusion with processes (which 

process executes what code)



THE MYSTERIOUS API
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• Define
• Your
• APIs



THE ABSOLUTE 
COORDINATOR
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mean stare

gproc lookup

send based 
on lookup



THE ABSOLUTE 
COORDINATOR
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• The simplest architecture
• Frees you from thinking about more complex 

and more Erlang solutions



THE ABSOLUTE 
COORDINATOR
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• Difficult problem to solve - at the end of the 
day, there is only one socket

• Coordinator’s responsibility can be limited
• Multiple processes can talk to each other 

directly
• gproc helps solve the problem (but it’s not 

free)
• Processes can let each other know their pids



THE MINOR OFFENDERS
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enormous state 
machine

tusks

long single 
clause function



THE MINOR OFFENDERS
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same module 
name 
everywhere

stripes



THE MINOR OFFENDERS
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ohgodpleasedon’tcrash

hard 
shell



THE MINOR OFFENDERS
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• More C habits
• Big functions that enclose all functionality, 

not making small ones if there is no reuse
• Complicated domain with complicated 

protocols
• Easier to make one process than split 

properly into several
• Desire for interfaces or virtual classes
• Defend against everything



HUNTING THE 
PROBLEMS
GENERAL TOOLS



THE ARSENAL
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THE REFACTOR 
QUICKCHECK
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• Get the pre-refactor code
• Refactor it
• Mock out all the external calls you must keep 

(including the sequence)
• Generate the outputs of all decision points
• Run



THE REFACTOR 
QUICKCHECK
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is_rtp_response_equiv(NumTests) ->
  Collect = fun({Transition, ToState, EndState}, B) ->
    collect({{Transition, ToState}, EndState#state.eqc_exit_path}, B)
            end,
  equiv_ref:check(fun pre_ref_function/1,
                  fun post_ref_function/1,
                  equiv_generator(),
                  fun mocking_setup/0,
                  fun mocking_dynamic_setup/1, Collect, NumTests).



THE REFACTOR 
QUICKCHECK
• 214 lines in 1 clause in 1 function

• 212 lines
• 3 functions
• 10 clauses for main processing - one for each 

scenario
• 0 new defects
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WRANGLER

• Semi-automated 
refactoring

• Reduces risk of 
introducing new 
mistakes

• Desired refactoring 
might not be supported

• Tool can be extended
• learning curve
• is the transformation 

correct?
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source: https://xkcd.com/1319/



ELVIS

• Automated code quality check
• Can check the most obvious things, however can’t 

really prevent bad code
• Worth considering e.g. in pull request approval
• New code goes through review
• A lot of old code
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