
MAESTRO – Orchestrating Large Scale Multiplayer Games
pedro.silva@miniclip.com / pedro.engana@miniclip.com

Erlang User Conference 2017

EUC 17 02

- Pedro Silva - Backend Development Lead @ Miniclip
• 18 years software engineering from embedded to distributed systems and

game servers development
• open source contributor and enthusiast (@github - posilva)
• passionate about Erlang (since 2014)

- Pedro Engana - Backend Software Engineer @ Miniclip
• 5 years doing a bit of everything in game development: from physics engines,

3d rendering, UI, artificial intelligence and currently game servers

About us…

EUC 17 03

- About Miniclip
- Backend @ Miniclip
- What is Maestro
- The Fundamentals
- Deployment and Monitoring
- The Maestro Ecosystem
- Trade-offs and Drawbacks

Agenda

19EUC 17Miniclip is…

19EUC 17Miniclip is…

20 @Miniclip EUC 17

More than 800M downloads

25M DAU

183M MAU
800+K PCU

20EUC 17What is Maestro… (some context)

08

• We use Erlang in all types of
backend services/servers 

• C++ is used in game servers
with realtime requirements  

• All our backend engineers have
C++ development background

• We have PHP and Java in some
services but we are porting to
Erlang, whenever it makes
sense 

EUC 17

Erlang
Java

PHP	
C++0

20
40
60
80
100

Backend	Type	vs	Language

Erlang Java PHP	 C++

Backend @ Miniclip

09EUC 17

Services

• Video Ads rewards  

• Single player games
RESTFul API servers

• Social Features (HTTP/
workers)

• Analytics

Single-Region Clusters

• Turn-Based Multiplayer
Games (PvP)  

• Massive persistent
connections (10’s of
nodes, ~35k users per
node)  

• Non latency sensitive
game

Multi-Region Clusters

• Soft realtime games
(PvP), latency sensitive  

• Arena mode (.IO) games
(game server engine) 

• 250 - 5k users per node  

Backend @ Miniclip

10EUC 17

Early 2016 - New mobile .IO game

 Stakeholders requirements:  

• Time to market (3 months to release world wide)

• Small team (2 client + 1 backend developer)

• Implement mobile(.IO) base features (MVP)

✴ Game configuration (dynamic)

✴ Game version upgrade (soft/hard)

✴ Lobby user session

✴ Arena management

✴ Game server upgrade

✴ Server scaling

✴ Load balance users per arena

✴ Use low cost infrastructure (AWS spot fleet)

Base features (existing in Erlang)

Technical challenge (initial):  

• Game was developed to web

• Game server(game engine) and client in C+

+ Custom protocol, using web socket

• Implement in C++ all base features that we

already have implemented in Erlang

Time to market (2/3 months to release world wide)

What is Maestro… (some context)

20EUC 17What is Maestro… (some context)

12EUC 17

Game Server (c++)

Client

Erlang Clusterware

Client

Game Server (c++)

Game
Server

Erlang Clusterware

Client

Game
Server

Client

What is Maestro… (initial architecture)

13EUC 17

✴ Common protocol for client

✴ Common protocol for game server

✴ Handling client connection (TCP/UDP/WS)

✴ Report metrics to our monitoring system

✴ Allow to scale up and down the server
infrastructure.

✴ Game server “code upgrade”

✴ Redirect players to game arenas

✴ This is a NEW APPROACH to IO Games, lets
design to reuse “tomorrow”

Our TODO shortlist

Game
Server

?

Client

Game
Server

Client

Client Protocol  
 (protobuf with extensions)

Game Server  
Protocol

Game arena manager  
and

monitoring

Scaling policy/Upgrade code

System Metrics

What is Maestro… (the opportunity)

20EUC 17

Maestro App

15EUC 17

Arena Manager Room Manager K9
Re

co
n

D
eb

ug
Co

ns
ol

e

Cluster Monitor

Game Features and Plugins

Ti
m

br
e

Co
nf

ig

TCP UDPWebSocket

User Session Conn. manager

Client Protocol (ext.)

Game Server Protocol (ext.)

Leaderboards
Service

Social
Networks
Service

IAP’s /
Payments

Account
System

Notifications
Service

Monetisation
System

Chat  
Service

Analytics
Service

New
Features…

Maestro as a Backend Product

16EUC 17

Maestro
Platform

Development Operations

Mentality

Client SDK

Game Server SDK
(C++/Haxe)

Rebar3 Template

Client  
protocolGame Server

protocol

Maestro  
Library

Cloud Formation   Jenkins 
Job

TemplateCode Upgrade with
AWS Code Deploy

Game engine

Features integration

Abstractions
Identify common 

 behaviours

Dashboard with  
default metrics

Console (Web/CLI)

Spot Monitor
Modular design

Reproducible 
Environments

Independent Product

Maestro Ecosystem

17

The Fundamentals

The Fundamentals EUC 17

The Fundamentals EUC 17 18

Maestro Library

- Manages core functionality
- Provides optional services
- Defines a communication protocol
- Defers decisions to callback modules
- Provides log and analytics facilities

Maestro App

- Game specific
- Configures services to use
- Extends communication protocol
- Responds to callbacks
- Created through a rebar3 template

The Fundamentals EUC 17 19

Starting a new Project

1.‘rebar3 new maestroapp
euc_app’

2.???

3.Profit! (Maybe…)

The Fundamentals EUC 17 20

Starting a new Project

‘make run’

All we have to do now is…

The Fundamentals EUC 17 21

Configuring Services

By default, no services are enabled, only
the bare minimum is running

Services are enabled and disabled
through sys.config

The template provides the various
available service options in comments

EUC 17 22The Fundamentals

MaestroUser
Connection

Room
Matchmaker

User
Account

Gameserver
Manager

Configuration
Manager

Cluster
Monitor

EUC 17 23The Fundamentals

Manages all communications between a maestro app
and the client application

Can use TCP, UDP and/or Websocket as the underlying
transport (using ranch and cowboy)

Implements the maestro user communication protocol

Delegates specific behaviour to the maestroapp through
a callback module implementing the user connection
behaviour

User Connection Service

EUC 17 24The Fundamentals

Configuration:
User Connection Service

EUC 17 25The Fundamentals

Configuration:
User Connection Service

EUC 17 26The Fundamentals

Usual Behaviour:
User Connection Service

Maestro

User
Conn.
Service

Maestroapp

Callback
ModuleClient

1. Send message

2. Deal with
generic Behaviour

3.Call module for game
specific behaviour

Server

EUC 17 27The Fundamentals

Callback Behaviour:
User Connection Service

EUC 17 28The Fundamentals

After configuring the service, and implementing the
callbacks, we’re ready for liftoff. We now have a client
acceptor and we can easily handle its behaviour.

User Connection Service

Maestro will deal with the user connection boilerplate
(according to Miniclip’s standards), and we can fully
focus on the domain logic of the project we’re working
on.

EUC 17 29The Fundamentals

The external game server manager is prepared to launch
and monitor any external executable.

It implements the maestro control protocol in order to talk
to its managed executables.

Delegates specific behaviour to the maestroapp through
a callback module implementing the gameserver
manager behaviour.

Gameserver Manager Service

EUC 17 30The Fundamentals

Gameserver Manager Service
Configuration:

EUC 17 31The Fundamentals

Gameserver Manager Service
Configuration:

EUC 17 32The Fundamentals

Gameserver Manager Service

GMS Gameserver

Launch: ./gs <access_key> <listen_port> <control_port>

GMS Gameserver

Authenticate: msg create_connection{<access_key>}

1.

2.

Launching gameservers:

EUC 17 33The Fundamentals

Gameserver Manager Service
Callback Behaviour:

EUC 17 34The Fundamentals

Gameserver Manager Service
The S3 Downloader sub-service:

Maestroapp

GMS

S3
Downloader

File System

gameserver_versions/

1.tgz

2.tgz

…

S3 Bucket

EUC 17 35The Fundamentals

Gameserver Manager Service
Gameserver upgrade flow:

Maestroapp

GMS

File System

gs_versions/

1.tgz

2.tgz

new.tgz

GS1

…

GS2

GSN

1. Poll for
changes

2. Send termination
message

EUC 17 36The Fundamentals

Gameserver Manager Service
Gameserver upgrade flow:

Maestroapp

GMS

GS1

GS2

GSN

…

Terminating…

New GS1

…

New GS2

New GSN

3. Launch new GS
Version

EUC 17 37The Fundamentals

Gameserver Manager Service
Gameserver upgrade flow:

Maestroapp

GMS

GS2 Terminating…

New GS1

…

New GS2

New GSN

4. Kill any still pending

EUC 17 38The Fundamentals

Having the game server manager and S3 downloader up
and running enables us to easily manage a stack of
running game servers.

We can manage their behaviour, monitor their status, and
deploy new revisions cleanly and automatically.

By following the maestro control proto and launch flow,
any gameserver can be adapted to work with maestro.

Gameserver Manager Service

EUC 17 39The Fundamentals

Cluster Monitor Service
The Cluster Monitor Service is responsible for managing
the erlang cluster of maestro apps running in several
machines across an AWS based infrastructure.

It offers an API to fetch information about all nodes in the
cluster, as well as an API for interacting with AWS (using
erlcloud).

It deals with the automatic scaling of the infrastructure,
basing it’s decisions on responses from callbacks made
on the maestro apps across the cluster.

EUC 17 40The Fundamentals

Cluster Monitor Service
Configuration:

EUC 17 41The Fundamentals

Cluster Monitor Service
Configuration:

EUC 17 42The Fundamentals

Cluster Monitor Service
Scaling process:

Node

Node Node

Node

Node Node

Leader

1. Report game
specific data to Node

Leader

EUC 17 43The Fundamentals

Cluster Monitor Service
Scaling process:

Node

Node Node

Node

Node Node

Leader

2. Adjust autoscaling group
based on reported

information
Autoscaling Group

EUC 17 44The Fundamentals

Cluster Monitor Service
Callback Behaviour:

EUC 17 45The Fundamentals

Cluster Monitor Service
Node Monitor also has hooks to interact with other
services, if they are running.

If a node is set to be killed, its Cluster Monitor Service will
set itself to ‘offline’, which will:
- Inform the User Connection Service to stop accepting

connections.
- Inform the Gameserver Manager Service to terminate its

gameservers so that they drain connections.

EUC 17 46The Fundamentals

Cluster Monitor Service

After setting up the cluster monitor service, and it’s
scaling rules, we’re ready to deploy an infrastructure of
several interconnected maestroapps, each with their
own gameservers.

The infrastructure is ready to grow, or shrink, according to
user demand according to project specific rules that can
be tailored to its needs.

47

Deployment and
Monitoring

Deployment and Monitoring EUC 17

EUC 17 48Deployment

Maestroapp

Gameserver

1. Jenkins Builds:

S3 Bucket

Code Deploy

EC2 Instance

2. Deploy to
Instance with:

2. Store
Binary in:

Maestro GS 1

…

GS N

4. Launches
Processes:

3. Probes for
new versions:

EUC 17 49Monitoring

EC2 Instance

Maestro GS 1

…

GS N

Realtime Dashboard
& Monitors

Incident reporting tool

1. Aggregate
Metrics

2. Report to
Web Dashboard 3. Trigger Alarms

50

Maestro Ecosystem

Maestro Ecosystem EUC 17

EUC 17 51Maestro Ecosystem

Partiture
Gameserver Maestro SDK

Virtuoso
Client Maestro SDK

Orchestra
C++ Gameserver Engine

Stagecraft
C++ Game Logic Framework

Provides compliance with maestro
startup flow and communication.

Common maestro features with
hooks for game specific information.

Libuv based, maestro compliant
gameserver engine.

Component based game
development toolchain.

52EUC 17

• As with every centralised code-base, a much greater deal of coordination
must now happen between backend developers.

• When a completely new feature needs to be added to a project there is
always going to be the question of ‘should it be part of Maestro?’

• Maestro has its own workflows, that differ from our past products (callback
based development, new type of protocol, etc…). Bringing new developers
into maestro projects requires some adjustments.

• If (or when) any major re-work of a core system needs to be done to
maestro, can have a ripple effect on the entire ecosystem, forcing several
libraries to apply the changes

Trade-offs and drawbacks

53EUC 17

• Maestro platform enable us to develop a game with base features 
out-of-the-box just by pressing some “buttons”.

• We had ONE backend engineer to develop and operate 5 games.

• Is a re-usable and extensible backend product.

• Core features are provided by Maestro. We can integrate any  
game server developed internally and/or externally using current or  
new developed server SDK’s.

• Maestro intends to be our internal ‘Game as a Service’ platform.

• It provides the infrastructure and the toolchain to: develop, build, deploy
and operate our games backend.

Final thoughts…

20

Thank you!

 @Miniclip EUC 17

Thank you

Q & A

… we are hiring! http://corporate.miniclip.com

