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Why Build an Erlang OS?

Fault tolerance

Scalability

Native high-level execution environment with universal data
exchange format (even including complex terms like functions).

Machine independent programming environment – run the same
OS and program code on x86, ARM, etc.
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Erlang Unikernel Hosting Systems

ErlangOnXen

Uses the Ling VM.

Targets paravirtualised Xen deployments (among others).

The most complete Erlang unikernel solution.

4mb deployable image sizes, with sub 250ms boot times.
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Erlang Unikernel Hosting Systems (Cont.)

Erlang on RumpRun

BEAM on small ‘rump’ kernel.

Generates 6mb images.

Erlang on OSv

Erjang on OSv, a small linux-compatible OS.

Generates ‘fat’ unikernels.

Greater Linux compatibility, at the cost of image deployment size.

ErlOS

BEAM (on MiniOS) on Xen.

Proof of concept. No longer supported.
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Embedded Erlang Platforms

GRiSP

Erlang on RTEMS (a small real-time OS).

Built as a platform for creating wireless IoT applications.

Targets ARM.

NERVES Project

Elixir/Erlang on a thin Linux layer.

Working to expose kernel functionality within the BEAM.

Erlang Embedded Initiative

erlang-mini packages for embedded devices.

Actor Library for Embedded (ALE).
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HydrOS: A General-Purpose Erlang OS

A general purpose operating system for server and desktop
systems.

Focuses on providing fault-tolerance and error recovery for
typically catastrophic OS and hardware events.

Written almost entirely in Erlang – from inter-node message
passing and drivers, to GUI applications.
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Open Areas in Erlang OS Design

Uninterpreted Erlang code on bare-metal via HiPE.

One unikernel per process?
Unikernels that build and launch other unikernels when processes
are spawned?

A tiny co-operative Erlang VM for many-core embedded devices
(for example, the Paralella).

Support for platforms with hardware message passing?
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Building An Erlang OS: Challenges

How will your Erlang code run?

Will it be ‘native’, interpreted, or interpreted within another VM?

Will it be BEAM compatible?

At what level? Instructions, AST, or BEAM code transpiler?
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Erlang OS System Architectures
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Erlang OS System Architectures (Cont.)
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Language Responsibility Division

How much of the work of the OS will be performed in Erlang? How
much will be performed by native code?

Will drivers be written in Erlang?

What about performance critical GUI app code?

Will you expose an Erlang interface to malloc and free, allowing
raw buffers?

HydrOS uses a system of layers:

Local kernel layer

Local OS layer

Global OS layer
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Language Responsibility Division in HydrOS
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Foreign Function Interfaces

How will your operating system incorporate native (C, assembly) code,
if at all?

How will you load and execute libraries?

If you are using them, how will your native-code drivers interact
with the VM scheduling system? Could they be purely event
(interrupt) driven?
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Reaching a Secure Steady-State

How will your OS boot?

Will you use an existing bootloader like
GRUB/LILO/SYSLINUX?

Will you implement EFI boot?

Once the OS has loaded, how will you ensure its security?

Secure the perimeter, not the interior?

HydrOS style capabilities?
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General Lessons Learnt

There is a fault-tolerance–performance spectrum on which your
OS must be placed.

Native-code is fast, but failures are harder to recover from.
This trade-off is particularly important for drivers and interrupt
handlers.

You may not need SMP support – design your systems
appropriately.

‘This simplifies the implementation greatly and speeds things up.
The philosophy is that you need more VMs to achieve true
multi-core parallelism. Hypervisor is the only ‘hardware’ scheduler,
Erlang processes are green threads.’
- Maxim Kharchenko, ErlangOnXen.
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Delving Into HydrOS

Erlang OS design, by example.

Architecture

Implementation

Demonstration
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Multikernel Architecture

HydrOS is built with a multikernel architecture.

Split the machine into multiple independent cores.

Each core gets a VM.

‘Single System Image’ layer unifies environment at Erlang level.
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Fault-Tolerance Through Isolation

Failures (even at the hardware level) in one core will not affect
other cores.

OS subsystems and drivers are also isolated from one another.

Restartable on demand.

Potential for de-centralisation in the future.
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Built-In Functions

HydrOS uses a library of BIFs to interact directly with the hardware.

Provides interfaces to CPU functionality.

Enabling and disabling interrupts, for example.

(Roughly) 24 functions, most with very short definitions.
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Erlang Drivers

HydrOS currently uses Erlang-only drivers.

Sets of communicating processes that provide message-passing
interfaces for hardware interaction.

Can (should?) be spread across multiple nodes in a machine.

IOAPICs used to route interrupts to the correct core.

De-asserts interrupts after message is generated.

May be a problem for level-triggered interrupts.
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Example HydrOS Driver
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HydrOS Window Management

HydrOS provides a framework for building and organising graphical
terminal applications.

Composable window interfaces.

Necessarily multi-process apps.

Apps can be distributed across different Erlang VMs, but present
as if they are part of a single operating system.

Currently uses raw memory buffers.
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A Generic HydrOS WM App
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HydrOS Console App
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Getting in the MUK: HydrOS Multiunikernels

The HydrOS approach to native code hosting.

Dedicate a single core in the system to acheiving your task.

Run a unikernel program on this core directly, without
intervention by any other part of the system.

Provide a library for communication with Erlang nodes.

HydrOS MUKs can be created by simply placing a C file in a directory
in the source tree.

The MUK generation system also accommodates more complex build
environments.
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HydrOS MUKs
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Orchestrated MUK Apps
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Securing BEAMs: HydrOS Capabilities

Create a tree of decreasingly capable processes.

Processes have the same or fewer capabilities than their parents.
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Capability Mechanics

[{memory, disallow, {addr, 16#1500000, 16#1600000}}]

[{memory, allow, {addr, 16#100000, 16#1600000}},
 {memory, disallow, all}]

[{memory, disallow, all},
 {memory, allow, {addr, 16#1600000, 16#6400000}}]
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Trees of Decreasingly Capable Processes

[]

[{ports, allow, [16#60, 16#64]}]

Keyboard Driver

[{ports, allow,

[16#60, 16#64]},

{memory, disallow, all}]

Limited Worker Process

[{memory, disallow, all},
 {ports, disallow, all}]

'Sandboxed' Console

Malicious App

[{memory, disallow, all},

 {ports, disallow, all}]

[{memory, disallow, all},

 {ports, disallow, all},

{memory, allow,

{addr, 16#100000,

16#1500000}]

[{memory, disallow, all},

 {ports, disallow, all},

{ports, allow, all}]
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Demo!

Basic terminal usage.

Window and system management.

Killing and restarting a live HydrOS node.
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Try it out!

Prebuilt images, sources, and build instructions are available at
http://hydros-project.org.

I can be contacted at secw2 [at] kent [dot] ac [dot] uk.
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