
How to Build an OS in Erlang:
A Whistle-stop Tour of HydrOS

Sam Williams

University of Kent

June 9, 2017

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 1 / 34



Outline

1 Why Build an Erlang OS?

2 Existing Systems and Architectures

3 Uncharted Territory: Ideas for Novel Erlang OS Architectures

4 Building An Erlang OS: Challenges

5 General Lessons Learnt

6 Delving Into HydrOS

7 Demo

8 Acknowledgements

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 2 / 34



Why Build an Erlang OS?

Fault tolerance

Scalability

Native high-level execution environment with universal data
exchange format (even including complex terms like functions).

Machine independent programming environment – run the same
OS and program code on x86, ARM, etc.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 3 / 34



Erlang Unikernel Hosting Systems

ErlangOnXen

Uses the Ling VM.

Targets paravirtualised Xen deployments (among others).

The most complete Erlang unikernel solution.

4mb deployable image sizes, with sub 250ms boot times.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 4 / 34



Erlang Unikernel Hosting Systems (Cont.)

Erlang on RumpRun

BEAM on small ‘rump’ kernel.

Generates 6mb images.

Erlang on OSv

Erjang on OSv, a small linux-compatible OS.

Generates ‘fat’ unikernels.

Greater Linux compatibility, at the cost of image deployment size.

ErlOS

BEAM (on MiniOS) on Xen.

Proof of concept. No longer supported.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 5 / 34



Embedded Erlang Platforms

GRiSP

Erlang on RTEMS (a small real-time OS).

Built as a platform for creating wireless IoT applications.

Targets ARM.

NERVES Project

Elixir/Erlang on a thin Linux layer.

Working to expose kernel functionality within the BEAM.

Erlang Embedded Initiative

erlang-mini packages for embedded devices.

Actor Library for Embedded (ALE).

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 6 / 34



HydrOS: A General-Purpose Erlang OS

A general purpose operating system for server and desktop
systems.

Focuses on providing fault-tolerance and error recovery for
typically catastrophic OS and hardware events.

Written almost entirely in Erlang – from inter-node message
passing and drivers, to GUI applications.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 7 / 34



Open Areas in Erlang OS Design

Uninterpreted Erlang code on bare-metal via HiPE.

One unikernel per process?
Unikernels that build and launch other unikernels when processes
are spawned?

A tiny co-operative Erlang VM for many-core embedded devices
(for example, the Paralella).

Support for platforms with hardware message passing?

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 8 / 34



Building An Erlang OS: Challenges

How will your Erlang code run?

Will it be ‘native’, interpreted, or interpreted within another VM?

Will it be BEAM compatible?

At what level? Instructions, AST, or BEAM code transpiler?

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 9 / 34



Erlang OS System Architectures

Hardware

Erlang Code

Hardware

VM

Erlang Code

Hardware

VM

Erlang Code

Monolithic OS

Hardware

VM

Erlang Code

VM VM VM

Erlang On
Metal

VM OS Multikernel OS Typical Erlang
Deployment

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 10 / 34



Erlang OS System Architectures (Cont.)

Hardware

Unikernel Erlang

Hypervisor

VM

Erlang Code

Hardware

Distributed 
Unikernel Erlang

Hypervisor

Erlang Code

VM VM VM VM

Hardware

Multiunikernel
Erlang

Erlang
Code

VM VM C
 C

o
d
e

App

C
 C

o
d
e

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 11 / 34



Language Responsibility Division

How much of the work of the OS will be performed in Erlang? How
much will be performed by native code?

Will drivers be written in Erlang?

What about performance critical GUI app code?

Will you expose an Erlang interface to malloc and free, allowing
raw buffers?

HydrOS uses a system of layers:

Local kernel layer

Local OS layer

Global OS layer

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 12 / 34



Language Responsibility Division in HydrOS

Global OS Layer

Local OS Layer

Local Kernel

Interrupts BIFs

Inter-Processor
Communication

C Code

Erlang Code

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 13 / 34



Foreign Function Interfaces

How will your operating system incorporate native (C, assembly) code,
if at all?

How will you load and execute libraries?

If you are using them, how will your native-code drivers interact
with the VM scheduling system? Could they be purely event
(interrupt) driven?

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 14 / 34



Reaching a Secure Steady-State

How will your OS boot?

Will you use an existing bootloader like
GRUB/LILO/SYSLINUX?

Will you implement EFI boot?

Once the OS has loaded, how will you ensure its security?

Secure the perimeter, not the interior?

HydrOS style capabilities?

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 15 / 34



General Lessons Learnt

There is a fault-tolerance–performance spectrum on which your
OS must be placed.

Native-code is fast, but failures are harder to recover from.
This trade-off is particularly important for drivers and interrupt
handlers.

You may not need SMP support – design your systems
appropriately.

‘This simplifies the implementation greatly and speeds things up.
The philosophy is that you need more VMs to achieve true
multi-core parallelism. Hypervisor is the only ‘hardware’ scheduler,
Erlang processes are green threads.’
- Maxim Kharchenko, ErlangOnXen.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 16 / 34



Delving Into HydrOS

Erlang OS design, by example.

Architecture

Implementation

Demonstration

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 17 / 34



Multikernel Architecture

HydrOS is built with a multikernel architecture.

Split the machine into multiple independent cores.

Each core gets a VM.

‘Single System Image’ layer unifies environment at Erlang level.

Hardware Cores

Apps

U
n
ik

e
rn

e
l

Microkernels

OS Layers

IPC

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 18 / 34



Fault-Tolerance Through Isolation

Failures (even at the hardware level) in one core will not affect
other cores.

OS subsystems and drivers are also isolated from one another.

Restartable on demand.

Potential for de-centralisation in the future.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 19 / 34



Built-In Functions

HydrOS uses a library of BIFs to interact directly with the hardware.

Provides interfaces to CPU functionality.

Enabling and disabling interrupts, for example.

(Roughly) 24 functions, most with very short definitions.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 20 / 34



Erlang Drivers

HydrOS currently uses Erlang-only drivers.

Sets of communicating processes that provide message-passing
interfaces for hardware interaction.

Can (should?) be spread across multiple nodes in a machine.

IOAPICs used to route interrupts to the correct core.

De-asserts interrupts after message is generated.

May be a problem for level-triggered interrupts.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 21 / 34



Example HydrOS Driver

Interrupt
Dispatcher

Keyboard
Handler

Keyboard
Listener

Keyboard
Listener

Node Kernel

Int. 0x21

Int. 0x21

Keyboard
Events

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 22 / 34



HydrOS Window Management

HydrOS provides a framework for building and organising graphical
terminal applications.

Composable window interfaces.

Necessarily multi-process apps.

Apps can be distributed across different Erlang VMs, but present
as if they are part of a single operating system.

Currently uses raw memory buffers.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 23 / 34



A Generic HydrOS WM App

Keyboard
Driver Key

Events

App
Input Proc.

... wm_window

Window
Buffer

VGA
Text

Buffer

Render
Commands

If foregrounded,
Draw to Output

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 24 / 34



HydrOS Console App

App
Input

Server

wm_window

Window
Buffer

Render
Commands

Worker
Process

Work Requests
and Responses

wm_terminal

String
Print Requests

Kbd.
Input

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 25 / 34



Getting in the MUK: HydrOS Multiunikernels

The HydrOS approach to native code hosting.

Dedicate a single core in the system to acheiving your task.

Run a unikernel program on this core directly, without
intervention by any other part of the system.

Provide a library for communication with Erlang nodes.

HydrOS MUKs can be created by simply placing a C file in a directory
in the source tree.

The MUK generation system also accommodates more complex build
environments.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 26 / 34



HydrOS MUKs

Core 1

Micro-
kernel

Core 2

Micro-
kernel

Core 3

Micro-
kernel

Core 4

Micro-
kernel

BEAM

OS
Procs.

Erlang
libs

BEAM

OS
Procs.

Erlang
libs

BEAM

OS
Procs.

Erlang
libs

BEAM

OS
Procs.

Erlang
libs

Erlang application

Core 5 Core 6

C node
unikernel

Basic
C lib.

Mesg.
library

GPU
accl.

render
server

 

C node
unikernel

Basic
C lib.

Mesg.
library

Net-
work
cache
server

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 27 / 34



Orchestrated MUK Apps

Core 1

Core 2

Core 4

Core 3

Core 6

HydrOS
Node

Core 5

HydrOS
Node

Network
Control

and Web
Server

Unikernel

C User
Account

Database
Unikernel

Prolog
Social
Graph
Search

Unikernel

File
Storage

Unikernel

Orchestrated
Unikernel App

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 28 / 34



Securing BEAMs: HydrOS Capabilities

Create a tree of decreasingly capable processes.

Processes have the same or fewer capabilities than their parents.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 29 / 34



Capability Mechanics

[{memory, disallow, {addr, 16#1500000, 16#1600000}}]

[{memory, allow, {addr, 16#100000, 16#1600000}},
 {memory, disallow, all}]

[{memory, disallow, all},
 {memory, allow, {addr, 16#1600000, 16#6400000}}]

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 30 / 34



Trees of Decreasingly Capable Processes

[]

[{ports, allow, [16#60, 16#64]}]

Keyboard Driver

[{ports, allow,

[16#60, 16#64]},

{memory, disallow, all}]

Limited Worker Process

[{memory, disallow, all},
 {ports, disallow, all}]

'Sandboxed' Console

Malicious App

[{memory, disallow, all},

 {ports, disallow, all}]

[{memory, disallow, all},

 {ports, disallow, all},

{memory, allow,

{addr, 16#100000,

16#1500000}]

[{memory, disallow, all},

 {ports, disallow, all},

{ports, allow, all}]

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 31 / 34



Demo!

Basic terminal usage.

Window and system management.

Killing and restarting a live HydrOS node.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 32 / 34



Acknowledgements

Special thanks for help with this presentation:

Simon Thompson, University of Kent.

Maxim Kharchenko, Erlang on Xen.

Neeraj Sharma, Erlang on Rumprun

HydrOS Contributors:

George Bates

James Forward

Anton Thomasson

Thanks also go to the ESPRC for funding the research.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 33 / 34



Try it out!

Prebuilt images, sources, and build instructions are available at
http://hydros-project.org.

I can be contacted at secw2 [at] kent [dot] ac [dot] uk.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whistle-stop Tour of HydrOSJune 9, 2017 34 / 34


	Why Build an Erlang OS?
	Existing Systems and Architectures
	Uncharted Territory: Ideas for Novel Erlang OS Architectures
	Building An Erlang OS: Challenges
	General Lessons Learnt
	Delving Into HydrOS
	Demo
	Acknowledgements

