How to Build an OS in Erlang:

A Whistle-stop Tour of HydrOS

Sam Williams

University of Kent

June 9, 2017

am Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 1/ 34

@ Why Build an Erlang OS?

© Existing Systems and Architectures

@ Uncharted Territory: Ideas for Novel Erlang OS Architectures
@ Building An Erlang OS: Challenges

@ General Lessons Learnt

@ Delving Into HydrOS

@ Denmo

O Acknowledgements

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 2 /34

Why Build an Erlang OS?

Fault tolerance
Scalability

Native high-level execution environment with universal data
exchange format (even including complex terms like functions).

@ Machine independent programming environment — run the same
OS and program code on x86, ARM, etc.

am Williams (Un s of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 3/ 34

Erlang Unikernel Hosting Systems

ErlangOnXen
@ Uses the Ling VM.

Targets paravirtualised Xen deployments (among others).

@ The most complete Erlang unikernel solution.

e 4mb deployable image sizes, with sub 250ms boot times.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 4/ 34

Erlang Unikernel Hosting Systems (Cont.)

Erlang on RumpRun
o BEAM on small ‘rump’ kernel.

o Generates 6mb images.
Erlang on OSv

e Erjang on OSv, a small linux-compatible OS.

o Generates ‘fat’ unikernels.

o Greater Linux compatibility, at the cost of image deployment size.
ErlOS

e BEAM (on MiniOS) on Xen.

@ Proof of concept. No longer supported.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 5/ 34

Embedded Erlang Platforms

GRiSP
e Erlang on RTEMS (a small real-time OS).

o Built as a platform for creating wireless IoT applications.
o Targets ARM.

NERVES Project

e Elixir/Erlang on a thin Linux layer.

e Working to expose kernel functionality within the BEAM.
Erlang Embedded Initiative

e erlang-mini packages for embedded devices.
e Actor Library for Embedded (ALE).

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 6/ 34

HydrOS: A General-Purpose Erlang OS

o A general purpose operating system for server and desktop
Systems.

e Focuses on providing fault-tolerance and error recovery for
typically catastrophic OS and hardware events.

e Written almost entirely in Erlang — from inter-node message
passing and drivers, to GUI applications.

am Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 7/ 34

Open Areas in Erlang OS Design

o Uninterpreted Erlang code on bare-metal via HiPE.

e One unikernel per process?
e Unikernels that build and launch other unikernels when processes
are spawned?

@ A tiny co-operative Erlang VM for many-core embedded devices
(for example, the Paralella).

e Support for platforms with hardware message passing?

am Williams (Un s of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 8/ 34

Building An Erlang OS: Challenges

e How will your Erlang code run?
e Will it be ‘native’, interpreted, or interpreted within another VM?

o Will it be BEAM compatible?
e At what level? Instructions, AST, or BEAM code transpiler?

am Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017

Erlang OS System Architectures

Erlang Code Erlang Code

Erlang Code VM VM| VM |VM VM
Hardware Hardware Hardware
Erlang On VM OS Multikernel OS

Metal

am Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 10 / 34

Erlang OS System Architectures (Cont.)

Erlang Code Erlang Code App
Erlang | o | o
0| O
Hypervisor Hypervisor VM| VM| G| O
Hardware Hardware Hardware
Unikernel Erlang Distributed Multiunikernel
Unikernel Erlang Erlang

June 9, 2017 11 / 34

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi

Language Responsibility Division

How much of the work of the OS will be performed in Erlang? How
much will be performed by native code?

e Will drivers be written in Erlang?
e What about performance critical GUI app code?

e Will you expose an Erlang interface to malloc and free, allowing
raw buffers?

HydrOS uses a system of layers:
@ Local kernel layer
e Local OS layer
e Global OS layer

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi

June 9, 2017 12 / 34

Language Responsibility Division in HydrOS

Erlang Code

Global OS Layer

Inter-Processor
Communication

Local OS Layer

Interrupts BIFs

Local Kernel

C Code

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 13 / 34

Foreign Function Interfaces

How will your operating system incorporate native (C, assembly) code,
if at all?

o How will you load and execute libraries?

e If you are using them, how will your native-code drivers interact
with the VM scheduling system? Could they be purely event
(interrupt) driven?

am Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 14 / 34

Reaching a Secure Steady-State

How will your OS boot?

e Will you use an existing bootloader like
GRUB/LILO/SYSLINUX?

e Will you implement EFI boot?
Once the OS has loaded, how will you ensure its security?

@ Secure the perimeter, not the interior?
e HydrOS style capabilities?

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017

General Lessons Learnt

@ There is a fault-tolerance—performance spectrum on which your
OS must be placed.
e Native-code is fast, but failures are harder to recover from.
e This trade-off is particularly important for drivers and interrupt
handlers.
@ You may not need SMP support — design your systems
appropriately.
o ‘This simplifies the implementation greatly and speeds things up.
The philosophy is that you need more VMs to achieve true
multi-core parallelism. Hypervisor is the only ‘hardware’ scheduler,
Erlang processes are green threads.’
- Maxim Kharchenko, ErlangOnXen.

am Williams (Un s of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 16 / 34

Delving Into HydrOS

Erlang OS design, by example.
@ Architecture
o Implementation

@ Demonstration

Kent) How to Build an O T Whi June 9, 2017 17 /

Multikernel Architecture

HydrOS is built with a multikernel architecture.
e Split the machine into multiple independent cores.

e Each core gets a VM.
e ‘Single System Image’ layer unifies environment at Erlang level.

Apps

IPC
OS Layers

Unikernel

Microkernels

Hardware Cores

June 9, 2017 18 / 34

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi

Fault-Tolerance Through Isolation

e Failures (even at the hardware level) in one core will not affect
other cores.

@ OS subsystems and drivers are also isolated from one another.
o Restartable on demand.

e Potential for de-centralisation in the future.

am Williams (Un s of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 19 / 34

Built-In Functions

HydrOS uses a library of BIFs to interact directly with the hardware.

e Provides interfaces to CPU functionality.
e Enabling and disabling interrupts, for example.

e (Roughly) 24 functions, most with very short definitions.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017

Erlang Drivers

HydrOS currently uses Erlang-only drivers.
@ Sets of communicating processes that provide message-passing
interfaces for hardware interaction.
e Can (should?) be spread across multiple nodes in a machine.
o TIOAPICs used to route interrupts to the correct core.

@ De-asserts interrupts after message is generated.
e May be a problem for level-triggered interrupts.

am Williams (Un s of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 21 / 34

Example HydrOS Driver

Keyboard
Events Keyboard
Listener
: Keyboard
Dispatcher
P Handler Keyboard
Int. 0x21 Listener

Node Kernel

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 22 / 34

HydrOS Window Management

HydrOS provides a framework for building and organising graphical
terminal applications.

o Composable window interfaces.

@ Necessarily multi-process apps.

@ Apps can be distributed across different Erlang VMs, but present
as if they are part of a single operating system.

o Currently uses raw memory buffers.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 23 / 34

A Generic HydrOS WM App

wm_window
Keyboard -

/" Render | (Window

If foregrounded,
Draw to Output

Y
VGA
Text

Buffer

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017

HydrOS Console

String —
Print Requests, wm_window

@ Render Window
Commands Buffer

Work Requests
and Responses

Worker
Process

am Williams (Univ y of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 25 / 34

Getting in the MUK: HydrOS Multiunikernels

The HydrOS approach to native code hosting.

@ Dedicate a single core in the system to acheiving your task.

o Run a unikernel program on this core directly, without
intervention by any other part of the system.

e Provide a library for communication with Erlang nodes.

HydrOS MUKSs can be created by simply placing a C file in a directory
in the source tree.

The MUK generation system also accommodates more complex build
environments.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 26 / 34

HydrOS MUKs

GPU Net-

Erlang application||| acc. ||| work

render||||cache

oS 0S oS 0OS server||||server
Procs.| | ||Procs.| | ||Procs.| | ||Procs.

Mesg. ||| Mesq.

Erlang|| | Erlang|| | Erlang|| | Erlang library|| |library

libs libs libs libs Basic ||| Basic
BEAM EAM | | BEAM

BEAM || B)C lib. C lib.

Micro- | | Micro- | | Micro- || Micro- || Cnode || C node
kernel | | kernel | | kernel | |kernel |unikernel| unikernel

Corel Core2 Core3 Core4 Core5 Coreb6b

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 27 / 34

Orchestrated MUK Apps

T

File
Storage
Unikernel

Core 4

Core 2
C User
Account
Database
Network Unikernel
Control
and Web
Server
Unikernel
Core 1 Prolog
Social
Graph
Search
Orchestrated Unikernel
Unikernel App Core 3
HydrOS
Node
Core 5

June 9, 2017

28 / 34

f Kent) How to Build an O

Securing BEAMs: HydrOS Capabilities

Create a tree of decreasingly capable processes.

Processes have the same or fewer capabilities than their parents.

am Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017

Capability Mechanics

[{memory, disallow, {addr, 16#1500000, 16#1600000} }]

[{memory, allow, {addr, 16#100000, 16#1600000} },
{memory, disallow, all}]

[{memory, disallow, all},
{memory, allow, {addr, 16#1600000, 16#6400000} }1]

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 30 / 34

'Sandboxed' Console

[{memory, disallow, all},
{ports, disallow, all}]

Malicious App

[{memory, disallow, all},
{ports, disallow, all}]

T~

[{memory, disallow, all}, [{memory, disallow, all},

{ports, disallow, all}, {ports, disallow, all},
{memory, allow, {ports, allow, all}]
{addr, 16#100000,

16#1500000}]

Keyboard Driver

[{ports, allow, [16#60, 16#64]}]

Limited Worker Process
[{ports, allow,
[16#60, 16#64]},
{memory, disallow, all}]

am Williams (Univ

of Kent) How to Build an OS in Erlang:A Whi

June 9, 2017

e Basic terminal usage.

e Window and system management.

e Killing and restarting a live HydrOS node.

June 9, 2017 32/

Acknowledgements

Special thanks for help with this presentation:

e Simon Thompson, University of Kent.
e Maxim Kharchenko, Erlang on Xen.

@ Neeraj Sharma, Erlang on Rumprun
HydrOS Contributors:

o George Bates
e James Forward

o Anton Thomasson

Thanks also go to the ESPRC for funding the research.

Sam Williams (University of Kent) How to Build an OS in Erlang:A Whi June 9, 2017 33 /34

Prebuilt images, sources, and build instructions are available at
http://hydros-project.org.

I can be contacted at secw?2 [at] kent [dot] ac [dot] uk.

am Williams (Univ

ity of Kent) How to Build an OS in Erlang:A Whi

June 9, 2017

	Why Build an Erlang OS?
	Existing Systems and Architectures
	Uncharted Territory: Ideas for Novel Erlang OS Architectures
	Building An Erlang OS: Challenges
	General Lessons Learnt
	Delving Into HydrOS
	Demo
	Acknowledgements

