

ROBOTICS AND SENSORS
USING ERLANG

EMBEDDED SYSTEMS WITH

Adam Lindberg
github.com/eproxus

http://github.com/eproxus

HARDWARE
COMPONENTS

SOFTWARE
FUTURE

DEMO

Boot, Serial console, Erlang shell

SPECS
THE GRISP
BOARD

Hardware & specifications

EMBEDDED
WIRELESS DEVICE

REAL ERLANG
ON

REAL BARE METAL

You’ll never get Erlang this close to hardware anywhere else

CONNECTORS
FOR

SENSORS &
ACTUATORS

300 MHZ
64 MiB RAM

WIFI
MICROSD

CPU

ARM CORTEX M7
ATMEL SAM V71
UP TO 300MHZ
FPU & DSP EXT.

▸ ARM Cortex M7 Core

▸ 32-bit System on a Chip (SoC)

▸ Atmel SAM V71 Microcontroller (MCU)

▸ Runs up to 300 Mhz

▸ Single- and double-precision HW Floating Point Unit (FPU)

▸ Digital Signal Processing extensions

RAM

Storage

MICROSD

Storage

INTERNAL
2048 KiB FLASH
384 KiB SRAM

▸ Flash used for bootloader

EXTERNAL
64 MiB SDRAM
2 KiB EEPROM

MICROSD

▸ 64 MiB SDRAM, plenty for Erlang

▸ EEPROM for storing configs

▸ MicroSD socket for external storage

WIFI

Storage

802.11N 2.4 GHZ
UP TO 150 MBPS
POWER SAVING

▸ IEEE 802.11 b/g/n for the 2.4 Ghz band

▸ On-board USB2.0 interface

▸ 72.2Mbps receive and transmit rate using 20MHz bandwidth

▸ 150Mbps receive and transmit rate using 40MHz bandwidth

▸ Power saving mechanism

GPIO

Two generic GPIO 6-pin ports

GPIO

Two generic GPIO 6-pin ports

RGB LEDS

Two RGB LEDs

SWITCHES

5 generic DIP switches

RESET

Reset button

GENERAL PURPOSE
INPUT/OUTPUT

SUPPORTS PWM

▸ Generic pins controllable at runtime

▸ Support for Pulse Width Modulation (PWM)

▸ LED brightness & precise motor control

UART

ASYNCHRONOUS
SERIAL COMMUNICATION

BIT STREAMS
CONFIGURABLE

▸ Universal Asynchronous Receiver/Transmitter (UART)

▸ Asynchronous serial communication

▸ Generic bit streams

▸ Data format and transmission speeds are configurable

SPI

One SPI 6-pin port

SPI

One SPI 12-pin port

SYNCHRONOUS
SERIAL COMMUNICATION

BROAD CHIP SUPPORT
UP TO 20 MBIT/S

▸ Serial Peripheral Interface

▸ Synchronous serial communication bus

▸ Simple as GPIO, but serial

▸ Lots of chips support it

▸ Fast, up to 20 Mbit/s

MASTER SLAVE PROTOCOL
2 LINES IO

1 CLOCK LINE
1 SLAVE SELECT

POWER & GROUND

▸ 6-pin master/slave protocol with 4 wires + power & ground

▸ 2 lines for input/otput (MOSI/MISO)

▸ 2 lines for clock and slave select

▸ One extended SPI port with extra interrupt lines (12-pin)

I2C

MASTER SLAVE PROTOCOL
1 DATA LINE

1 CLOCK LINE
POWER & GROUND

ADRESSABLE

▸ Inter-Integrated Circuit

▸ Master/slave protocol

▸ Two lines (data + clock) + power & ground

▸ Addressable clients, send data packets with address

▸ Usually for board-local communication, unreliable over longer distances

▸ Slow, only 0.4 Mbit/s

1-WIRE

DALLAS 1-WIRE
1 DATA + POWER LINE

GROUND
ADDRESSABLE MICROLAN

▸ Developed by Dallas Semiconductor Corp.

▸ Only 1 wire for data (plus ground)

▸ To power themselves, devices charges a small capacitor when data line is not used

▸ Similar to I2C but lower data rate and longer distance

▸ Master plus devices constitutes a MicroLAN

▸ Devices has a unique 64-bit address (ID + device type)

▸ Popular devices are buttons, key fobs, weather sensors etc.

MICROUSB

JTAG

JTAG debugger

MICROUSB FOR
POWER & SERIAL

CONSOLE
JTAG DEBUGGER

▸ USB connector

▸ Power from laptop or battery pack

▸ Serial console

▸ JTAG debugger access

▸ External JTAG connector

▸ ARM 2×10 pin

PMODS
ACCESSORIES

TEXT

TEXT

CON3

GPIO

Four standard 3-wire servo motor connectors

TEXT

NAV

SPI

9-axis Inertial Measurement Unit (IMU) Plus Barometer

3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer

TEXT

GYRO

SPI

3-axis Digital Gyroscope

TEXT

ACL2
SPI

3-axis Microelectromechanical System (MEMS) Accelerometer

TEXT

HB3

GPIO

H-bridge Driver with Feedback Inputs

Drive a DC motor with operation voltage up to 12V

TEXT

HB5

GPIO

H-bridge Driver with Feedback Inputs

6-pin JST connector for direct connection to Digilent motor/gearboxes
Drive a DC motor with operation voltage up to 12V

TEXT

GPS

UART

GPS Receiver

3m 2D satellite positioning accuracy

DEMO

PmodACL2

Accelerando?

SOFTWARE

TOOLCHAIN,
OS
& RUNTIME

RTEMS
RTOS

“OS-AS-A-LIBRARY”
POSIX

▸ Real-Time Executive for Multiprocessor Systems

▸ Real Time Operating System (RTOS)

▸ Free & open source

▸ “OS-as-a-library”

▸ Supports open standard APIs (e.g. POSIX)

PERFORMANT
SMP

PROCESSES VIA THREADS
FREEBSD NETWORKING

▸ Scalable timer and timeout support

▸ Uses fine-grained locking

▸ Processes emulated by threads

▸ SMP support

▸ Uses the FreeBSD networking stack

BEAM COMPILED WITH
RTEMS

STARTS FROM BOOTLOADER
OS APIS PROVIDED BY

RTEMS

▸ We compile BEAM with RTEMS headers and libraries

▸ The VM can be started directly from the boot loader

▸ The OS APIs that the VM needs are implemented by RTEMS

HARDWARE

BEAM

GRiSP RUNTIME

APPLICATION

OTP

RTEMS

GRiSP RUNTIME
HARDWARE ABSTRACTION

LOW LEVEL DRIVERS
HIGH LEVEL DRIVERS

▸ Erlang application and linked-in drivers

▸ Interface to interact with the GRiSP hardware and devices

▸ Low-level drivers for SPI & GPIO

▸ High-level drivers

▸ LEDs

▸ DIP switches

▸ PMODs

SPI DRIVER
EXAMPLE

SPI DRIVER (C)
void grisp_spi_output
(ErlDrvData drv_data, char *buf, ErlDrvSizeT len)
{
 // …

 // Grab first byte as chip select
 cs = buf[0];
 bufGH;
 len -= 1;

 // …
 msg.cs = cs;
 msg.tx_buf = buf;
 msg.rx_buf = res;
 msg.len = len;
 rv = ioctl(grisp_spi_data.fd, SPI_IOC_MESSAGE(1),
 &msg);
 assert(rv == 0);
 driver_output(grisp_spi_data.port, res, len);
}

SPI DRIVER (C)

-module(grisp_spi_drv).
-export([open/0, command/3]).

open() Y>
 open_port({spawn_driver, "grisp_spi_drv"},
 [binary]).

command(Port, Slot, Command) Y>
 Slot = slave_select(Slot), # gpio1 Y> 2
 Command = <<Slot, Command/binary>>,
 Port ! {self(), {command, Command}}.

SPI DRIVER (ERLANG)

slave_select is a function that maps the slot name to a number

1> Command = <<16#0B, 16#0E>>.
<<16#0B, 16#0E>>
2> Raw = <<Command/binary, 0>>.
<<16#0B, 16#0E, 0>>
3> grisp_spi_drv:command(Port, spi1, Raw).
{<0.132.0>,{command,spi1,<<11,14,0>>}}
4> flush().
Shell got {<0.127.0>,{data,<<0,0,172>>}}
ok
5> grisp_spi:send_recv(spi1, Command, 2, 1).
<<"¬">>

SPI DRIVER (SHELL)

DEMO

Motor

Robot?

THE FUTURE

WHAT WE’RE
WORKING ON

ISSUES
FULL WIFI SUPPORT

MICROSD SPEED
CLOCK SPEED “OFF”

▸ Direct memory access (DMA)

▸ Some low-lever time mechanism used by Erlang has the wrong time

IOT
SYNCHRONIZATION-FREE

PROGRAMMING
HYBRID GOSSIP PROTOCOLS

ROADMAP
ERLANG 19/20

REBAR3 TOOLING
PMOD DRIVERS & WIFI

▸ Rebar3 tooling (releases, cross compiling custom VM build)

▸ More high-level PMOD drivers

▸ Wi-Fi connection management

▸ Upgrade to Erlang 19/20

QUESTIONS?
THANK YOU!

grisp.org
github.com/grisp
stritzinger.com

http://grisp.org
http://github.com/grisp
http://stritzinger.com

