SIMON THOMPSON

ERLANG: THE POWER OF
FUNCTIONAL PROGRAMMING

Erlang Is a concurrent, fault-
tolerant, robust, distributed
programming language ...

... that Is based on the paradigm
of functional programming.

FUNCTIONAL
ERLANG

isPath(_Maze, []) —
true;
isPath(Maze, [P]) —
inGrid(Maze,P);
isPath(Maze, [P1,P2|Ps]) —

inGrid(Maze,P1) andalso
isEmpty(Maze,P1l) andalso
adjacent(P1,P2) andalso
isPath(Maze, [P2|Ps]).

do-it-yourself
lata types

area({circle,_,R}) -
math:pi()*RxR;

area({tri, ,A,B,C}) —
S = (A+B+C)/2,

math:sqrt(Sx(S-A)*(S-B)*(S-C)).

immutable
variables

echo(Pid,N) —>
receive
Msg —> Pid!Msg
end,
echo(Pid,N+1).

PossPoints = lists:filter(fun (X) —
not lists:member(X,Avoid) end,adjPoints(Maze,Pl)),
lists:concat(lists:map(fun (P)-—>
[[P1|Path] || Path <- allPaths(Maze,P,P2, [P1|Avoid])] end, PossPoints))

2, 2.3, 123456789023456, ..
true, 'not true', symbol, ..

{circle,{2.0,3.0},4.3}, ..

12,3,4, .. 1, [2,3]|[4, .11, -

fun(F) —>
fun(Y) —> F(2xY) - F(Y) end
end

4.13 Influence from functional programming

By now the influence of functional programming on Erlang was
clear. What started as the addition of concurrency to a logic lan-
guage ended with us removing virtually all traces of Prolog from
the language and adding many well-known features from functional
languages.

Higher-order functions and list comprehensions were added to
the language. The only remaining signs of the Prolog heritage lie in
the syntax for atoms and variables, the scoping rules for variables
and the dynamic type system.

FUNCTIONS
AS DAIA

“Functions are first-class citizens™

A function actively represents
behaviour of some sort, and we
deal with it just like any other
kind of data.

é‘{g‘"» ; -~ 5 [/ / ! % ﬁ 4 .éﬁ'm.“@lﬁﬁ}é"‘,‘i‘ z

R
AT

e

TR e
£ x

e %5
"";‘.v‘.x_.&..'

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

What Is a strategy?

Random
Echo
No repeats
Statistical

What Is a strategy?

We choose what to play,
depending on your last
move, or the history of

all your moves.

What is a strategy?

ype plays() :: [play()].

ype strategy() :: fun((plays()) — play()).

We choose what to play,
depending on your last
move, or the history of

all your moves.

random(_) —>
random_play().

echo([]) —
random_play();
echo([X|_Xs]) —
X.

beat([]) —>
random_play();
beat([X]|_]) —
case X of
rock —> sCc1ss0rs;
paper —> rock;
scissors —> paper
end.

interact(Strategy) —
interact(Strategy, [1).

interact(Strategy,Xs) —>

Response = Strategy(Xs),

{ok, [Play|_]} = io:fread('play one of rock, paper, scissors, or stop: ',"~a"),

case Play of

stop —> ok;

-2

Result = result({Play,Response}),
io: format("Machine has played ~p, result is ~p~n", [Response,Result]),
interact(Strategy, [Play|Xs])

What Is a strategy combinator?

Choose randomly between these strategies.
Apply them all and choose most popular result.

Replay each of these strategies on the history so
far and apply the one that's been best so far.

What is a strategy combinator?

Apply them all and choose most popular result.

Replay each of these strategies on the history so
far and apply the one that's been best so far.

Take home

Toy example
Generality: not just a finite set . ..
Up a level: combining strategies

=17 WORLD RPS SOCIETY

Serving the needs of decision makers since 1918

Game Basics Advanced RPS World RPS Store The World RPS Society Bull Board Running a Tournament Blog

Worldrps.com
has a new look

Say goodbye to the old
cluttered look of the World
RPS Society site.

The IT Brigade told us it would take them four

. - N
weeks to re-do the worldrps.com web site. So WORLD RPS SOCIETY

after consuming four years, 4 palettes of Mellow
Yellow, dozens of crates of Pringles, and
surviving a few health scares, the team has
done it.

https://github.com/simonjohnthompson/streams

PARSER
COMBINATORS

text

parse tree

4

remaining text

type parser() ((string()) {ast(),string()}).

spec sequence(parser(),parser()) — parser().

text #.» parse tree

remaining text

text parse {ree

remaining text

type parser()

spec sequence(parser(),parser()) —> parser().

text »ﬁ parse tree

CIETNNTREY

Take home

Real example
Haskell, Scala, 0Caml, Elixir, ...
Hints at a design pattern

hut . ..

If all we want is one parse,
then we should only
evaluate the list of
possible results
on demand

EVALUATION
ON DEMAND

function evaluation in Erlang

switch(N,Pos,Neg) —>
case N>0 of
true -—> Pos;

-> Neg

switch(N,Pos,Neq) —>
case N>0 of
true —> Pos;
-> Neg

sum_first_two([A,B|_Rest])
-> A+B.

but if an argument is a
function then it's
passed unevaluated.

but if an argument is a
function then it's
passed unevaluated.

fun () —> Stuff end

but If an argument Is a
function then it's
passed unevaluated.

fun () —> Stuff end

fun () —> Stuff end ()

STREAMS

Original image: hitp://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

cons(X,Xs) —>
fun() — {X,Xs} end.

head(L) —>
case (L()) of
{H,_} —> H
end.

tail(L) —
case (L()) of
{,T} =T
end.

—define(cons(X,Xs),
fun() — {X,Xs} end).

ones() —>

?cons(1,ones()).

ones() —>
?2cons(1,ones()).

ns(N) —

?cons(N,ns(N+1)).

primes() —> sieve(ns(2)).

sieve(Ns) —
H = head(Ns),
?cons(H,sieve(cut(H,tail(Ns)))).

cut(N,Ns) —
H = head(Ns),
case H rem N of
0 — cut(N,tail(Ns));
_ —=> ?cons(H,cut(N,tail(Ns)))
end.

fibs() —>
?7cons (0,
?7cons(1,
addZip(fibs(),tail(fibs())))).

addZip(Xs,Ys) —>
?cons(head(Xs)+head(Ys), addZip(tail(Xs),tail(Ys))).

fibs() —
?cons (0,

?cons(1,
addZip(fibs(),tail(fibs())))).

addZip(Xs,Ys) —>
?cons(head(Xs)+head(Ys), addZip(tail(Xs),tail(Ys))).

demo

Take home

“Infinite” streams
apparently circular
repeated re-computation

LALY
EVALUATION

ensure that each argument is
evaluated at most once

ensure that each argument is
evaluated at most once

we must ensure that results
are memoised in some way

butisnt

thata job
for the

compiler?

key idea

we explicitly manage how
results are stored once evaluated

use an ETS table to keep track
of evaluated results, or ...

... model the store functionally,
thread it through the calculations

USING
ETS TABLES

—-define(cons(X,Xs), begin ets:insert(tab,{0,next_ref()+1}) ,
ets:insert(tab, {next_ref(), {thunk, fun () —> {X,Xs} end}}),

{ref,next_ref()} end).

head({ref,Ref}) —>
case ets:lookup(tab,Ref) of
[{Ref,{thunk,F}}] —> Val = F(),
ets:insert(tab,{Ref,Val}),
{H,_} = val,
H;

[{Ref!{HI_}}] —-> H
end.

ones() —>
?2cons(1,ones()).

onesC() —>
This = next _ref()+1,
?cons(1,{ref,This}).

fibs() —
?cons (0,

?cons(1,
addZip(fibs(),tail(fibs())))).

addZip(Xs,Ys) —>
?cons(head(Xs)+head(Ys), addZip(tail(Xs),tail(Ys))).

fibsC() —
This = next_ref()+1,
Next = This+1,
?cons (0,
?7cons(1,
addZip({ref,This},{ref,Next}))).

Explicitly managed refs

Simulates full lazy implementation

Uses impure features ...
... but a smooth transition

AN EXPLICIT
SI0RE

store hefore

Input #-» result

store after

ps(Xs,N,Tab) —>
io:format("~w~n", [head(Xs,Tab)]),

{T,Tabl} = tail(Xs,Tab),
ps(T,N-1,Tabl).

Node to {Head, {thunk, Tail}}

Thunk takes state as argument . ..
... S0 that the suspended

computation can be evaluated In

the context of the current state.

MEMOISATION

fib(@) —> 0;
fib(1) —> 1;

fib(N) —> fib(N-1) + fib(N-2).

fibM(Q) —> 0;
fibM(1) — 1;
fibM(N) —>
case ets:lookup(tab,N) of
[] => V = fibM(N-1) + fibM(N-2),

ets:insert(tab, {N,V}),
V;
[{N,V}] —>V
end.

-type vector(T) :: {integer(),list(T)}.

—-define(mkV(Xs),{length(Xs),Xs}).

—-define(length(V),element(1,V)).

-type vector(T) :: {integer(),list(T)}.
—-define(mkV(Xs),{length(Xs),Xs}).

—-define(length(V),element(1,V)).

—spec joinV(T,vector(T)) — vector(T).

joinV(Sep,{M,Xs}) —> {2xM-1,lists:join(Sep,Xs)}.

—-define(join(Sep,V),element(2,joinV(Sep,V))).

10 CONCLUDE

functions are flexible and
powerful modelling tool

strategies
parsers
simulation

pure modelling of effects
Is not straightforward

monads, monad transformers,
effects, ... provide some
useful patterns

reify?

can model DSLs of strategies,
parsers, and write interpreters
for these DSLs into the

functions we ve seen here

data and types

all the data we used here was
well understood 30 years ago

It Is just that the types have changed

functions are flexible and
powerful modelling tool

strategies
parsers
simulation

https://github.com/simonjohnthompson/streams

and | didn't say
anything directly
about dependent

types ;-

