
Elixir is not
Alone

Talking to other languages

@nirev
Guilherme de Maio

nirev?
who is

nirev?
who is

Working with Elixir since Sept 2015

@ São Paulo, Brasil

!

?

What?

A startup focused on solving HR bureaucracy in Brazil.

Which means: lots of system integrations,  
lots of spreadsheets, lots of document storage,  
lots of boring but ridiculously sensitive stuff

Elixir + Phoenix

ClojureScript + Reagent

PostgreSQL

ElasticSearch

(In Production)Stack

Integrating with
other languages

Why use other
languages?

• Use the right tool for the job.  
Elixir/Erlang is great, but not for everything

• Maybe you don’t have the time. 
It takes time to implement something. What if you
can’t invest time reimplementing something that is
already there in other language?

Elixir/Erlang
Why use other languages?

Image Processing

Import/Export  
spreadsheets  
(docx; xlsx)

Features

?
Features

?X
Features

Image Processing

Import/Export  
spreadsheets  
(docx; xlsx)

Features

?

How to integrate other
languages to your Elixir/

Erlang codebase?

Elixir/Erlang
Interoperability Options

Ports
NIFs

Port Drivers
Thrift

APIs
Nodes

Elixir/Erlang
Ports

Elixir/Erlang
Ports

• THE standard way to communicate with the Otherworld,
outside of the BEAM

• It’s STDIN/STDOUT bridge to other programs which
reside in another OS process.

• Each port is owned by a single Erlang process, and only
that process can talk to the port. If the process ends, so
does the port.

• Elixir’s System.cmd uses Ports, for example.

Elixir/Erlang
Ports

BEAM

Port

Program
stdin

stdout

Owner

IT’s safe:
• When the program dies/crashes, only the port dies
• When the owner dies, so does the port and pipes are

closed

Elixir/Erlang
Ports: caveats

• Programs that wait till EOF to emit output: when closing a
port, you close both pipes. There’s no way to receive
after. (alternative: Porcelain, DIY wrapper, other libs?)

• Communication is streamed. No guarantees of chunks
sent/received together. So parse it, char by char!

• No specific encoding format. So encode as you like:
Erlang Term Format, JSON, bytes, etc..

• Zombie processes

https://github.com/alco/porcelain
http://erlang.org/doc/apps/erts/erl_ext_dist.html

Elixir/Erlang
Ports

Elixir/Erlang
NIFs: Native Implemented Functions

Elixir/Erlang
NIFs: Native Implemented Functions

Is a way to implement code in C (or a language
compatible) that is loaded as shared libraries by the BEAM

Code is exposed as functions of a module in Elixir/Erlang
for those calling it

Simpler than ports in some aspects: no need to encode
data, and no need to use STDIN, STDOUT

It’s faster.

Elixir/Erlang
NIFs: Native Implemented Functions

BEAM

NIF

A NIF is executed as a direct extension of the VM.
Meaning: it’s not done in a safe environment.

The VM can’t provide same guarantees when executing
Erlang/Elixir code: no preemptive scheduling or memory
safety.

BEAM

Elixir/Erlang
NIFs: Native Implemented Functions

Elixir/Erlang
NIFs: Native Implemented Functions

BEAM

Elixir/Erlang
NIFs: don’t be afraid

Although it’s less safe, don’t be afraid of using it:

• Several libs are implemented with NIFs. Markdown
parser for example

• Dirty Schedulers are enable by default in newer Erlang
releases

• Rustler: safer NIFs implemented with Rust :)

Elixir/Erlang
NIFs: Examples

Elixir/Erlang
NIFs: Examples

Elixir/Erlang
NIFs: Examples

Elixir/Erlang
Port Drivers

Elixir/Erlang
Port Drivers

It’s kind of a mix between NIF and Port.

You create a port, but for a process living inside the BEAM.

Like NIF:
• it’s loaded as a share library (.so)
• there’s no context switch
• if it breaks, it breaks it all

The main difference is: you’re implementing an Erlang
process in C, as so it can by async and react to events/
messages!

(but it’s harder to implement)

Elixir/Erlang
Thrift

Elixir/Erlang
Thrift

Apache Thrift is an RPC framework created by Facebook.
Kinda like the “the sucessor of CORBA”

It provides an Interface Definition Language, to create data
types and function signatures that can be implemented in a
lot of languages.

For Elixir, there is Pinterest’s riffed

Supports: java, c, c++, python, ruby, Haskell, perl, php,
and more

Serialization with binary format, quite fast

Elixir/Erlang
Nodes

Elixir/Erlang
C/Java Nodes

Using Erl_Interface in C or Jinterface in Java.

Those libraries make possible for you to run a C/Java
program that behaves like a distributed Erlang node.

It’s not coupled with your app, and it’s possible to detect
failures in the remote node.

IMO, makes more sense when it’s an application that can
co-exist but not necessarily depend of one another.

So, what do we
get from all of this?

Takeaways

• There are a lot of ways to integrate

• Consider Performance vs Safety

• Choose what is best for your case

• In doubt, go the easy and safer way.  
Optimize later ;)

Elixir/Erlang is not an island

Elixir/Erlang

★ http://erlang.org/doc/tutorial/introduction.html
★ http://erlang.org/doc/man/erl_nif.html
★ http://theerlangelist.com/article/outside_elixir
★ https://github.com/knewter/complex
★ https://github.com/alco/porcelain
★ http://elixir-lang.org/docs/stable/elixir/Port.html
★ https://github.com/Xerpa/exmagick
★ https://github.com/hansihe/rustler
★ https://github.com/pinterest/riffed
★ https://hackernoon.com/calling-python-from-elixir-erlport-vs-thrift

References
Links for everyone11!!

http://erlang.org/doc/tutorial/introduction.html
http://erlang.org/doc/man/erl_nif.html
http://theerlangelist.com/article/outside_elixir
https://github.com/knewter/complex
https://github.com/alco/porcelain
http://elixir-lang.org/docs/stable/elixir/Port.html
https://github.com/Xerpa/exmagick
https://github.com/hansihe/rustler
https://github.com/pinterest/riffed
https://hackernoon.com/calling-python-from-elixir-erlport-vs-thrift-be75073b6536

Thank you!

@nirev
Guilherme de Maio

