
Elixir is not Ruby
#ELFBA 2017 - Buenos Aires !

1



$ whoami
• Thomas Gautier "


• Co Founder & CTO at 


• We don't have a website but we maintain an Open Source 
package: bamboo_smtp


• Teacher, Architect, Developer, DevOps


• API Lover


• Former teacher at Le Wagon Paris & Lille (9 weeks Ruby 
bootcamp)

2



Lille #











$ man fewlines

• We provide Tech Education 🤓


• We build ⚡ API-first Software ⚡ for the Retail industry


• We 😍 Elixir!



Community 😍
• LilleFP:


• Biggest french speaking Meetup on Functional Programming


• ~50 attendees


• Every 2 months


• Elixir |> Lille 

• One of the "biggest" french speaking Meetup


• ~30 attendees


• Quarterly

9



Why this talk?

• We're developers first,


• but we're also teachers,


• to beginners and seasoned developers alike.



and we used to do it 
with Ruby



DISCLAIMER
WARNING !



We ❤ Ruby



We just don't use it 
anymore



but there's a problem



WAT!



WAT!



and this makes us go



😡



Because the only thing 
that Ruby and Elixir have 

in common



is this guy
José Valim - Elixir creator, former Rails core team.



From OO to FP
This is our journey, as developers, and as teachers



Elixir is not Ruby



because it's obviously 
not Object Oriented



Even if Processes & Messages 
may be the "best" implementation 

of Alan Kay's ideas



Elixir

• Modules


• Functions as 1st class citizen


• Immutability



Elixir ❤

• Pattern Matching


• Protocols (Java Interfaces ))


• Macros (LISP baby *)



Elixir is Functional

Thanks Captain 
Obvious +



so we focused on 
Functional



and learned about

• Function as the primary (if not only) abstraction


• Immutability of data (although we can rebind variables)


• Expressions over Statements (we all love return values)


• Referential Transparency (same output for same input)



This helped a lot
But for the lower level abstraction only



Because we were 
using Phoenix*

* pre 1.3, since then Chris McCord's ideas are really 
going in the right direction 🚀



So, except for Ecto



At the upmost level of 
abstraction, our app looked 

like a good old Rails monolith



This is 😞 me



• We did everything by the book(s) (and we did read a lot of 
them)


• But we felt like just doing plain old Model/View/Controller 
stuff was not getting us anywhere


• Even if we could call our code Functional



😡



So yes, Elixir is 
Functional



But it didn't make us 
feel any better



Because we heard 
about OTP promises



and we didn't feel 
those superpowers 



• Concurrency


• Distribution


• Fault Tolerance


• (D)ETS & Mnesia


• Hot Code Reload & Releases


• Cookies 🍪 and Poneys 🦄



😼



So Elixir is not (only) 
about being Functional



But it's (mostly) about 
OTP patterns



So we looked for a 
book

and we found one!



The Little Elixir & OTP Guidebook
Benjamin Tan Wei Hao



Especially the parts on
• Processes


• Monitors


• Supervisors


• Implementing a Workers Pool Supervisor (this was hard 
😰)


• Re-implementing GenServer (a naïve one, we're not that 
good)



So we got the 
Concurrency part



💪



But what about 
Distribution?



Well, it kinda worked
but just on one node...



😩



How do we distribute 
state across nodes?



José says we don't really need 
Distribution

but we do need it...



We have lots (millions) of 
users, all around the 

world



with a real need of 
online/offline strategies



And this is where we 
felt kind of lost...



Not that many articles 
available online



And not a lot of 
books either



except one



Designing for Scalability with Erlang/
OTP

Francesco Cesarini and Steve Vinoski



Thanks Francesco for 
finally finishing your book 

🤗



So did we find a solution 
for Distribution?



No, we didn't find 
one...

but we've found 3 of them 😏



1. OTP Only
• No dependency (BEAM as your OS 😈)


• Fully meshed Nodes topology


• Every node is named, based on the "application" it executes:


• `business_2`,


• `cache_4`,


• `proxy_42`


• Then we know which nodes to contact with a random call



2. Cloud Cheat
• Rely on AWS tag for instances (ie: `cache`, `business`, `proxy`)


• This could work with any Cloud Provider that supports it


• At Node startup, it reads the AWS tags and registers itself to 
a custom Registry (duplicated through the cluster)


• Each time we need to do a call to a GenServer, pick a 
random `tag`, whatever the Node and call it


• If we receive a `nodedown` message, remove the Node from 
the Registry



3. RabbitMQ 🥕

• New dependency in the Stack 😟


• Push data to RabbitMQ


• Use GenStage to handle incoming data from RabbitMQ



We don't know which 
one will fit us the best

But we'd love to discuss about it with you



Conclusion
• Elixir, Erlang & OTP are amazing platforms with great 

communities


• Avoid the Ruby and Elixir analogies


• Insist on the unique advantages of OTP (Concurrency, 
Distribution, Supervision) instead of Functional idioms


• Try to (re)implement by yourself GenServer, Supervision 
Trees, etc... This is how we really got into OTP


• Share more on Distribution, this is the killer feature of OTP



Thanks 🙇
Thomas Gautier - @Aryko

blog.fewlines.co


