
Sistemas Distribuidos: ¿Para Qué?
Mariano Guerra @warianoguerra

instadeq.com @instadeq

Erlang Factory Light

Buenos Aires 2017

1 / 73

https://twitter.com/warianoguerra
https://instadeq.com/
https://twitter.com/instadeq

2 / 73

3 / 73

Disclaimer

4 / 73

New boring CRUD app, how can we make it exciting?

5 / 73

6 / 73

What could possibly go wrong?
Well ... let's see

7 / 73

A = foo()
B = bar(A)
do_something(A, B)

8 / 73

Tracing/Metrics
Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure

Open Tracing/zipkin
Erlang gh:project-fifo/otters

9 / 73

https://research.google.com/pubs/pub36356.html
http://opentracing.io/
https://github.com/project-fifo/otters

Logs
Collection, Centralization, Search, Correlation

ELK, Splunk, flume, fluentd, "hadoop"

10 / 73

Timeouts, Retries, Exponential Backo�
gh:Netflix/Histrix

Latency and Fault Tolerance

Stop cascading failures.

Fallbacks and graceful degradation.

Circuit Breakers.

11 / 73

https://github.com/Netflix/Hystrix

Timeouts, Retries, Exponential Backo�
gh:Netflix/Histrix

Realtime Operations

Realtime monitoring and configuration changes.

Watch service and property changes take effect immediately.

12 / 73

https://github.com/Netflix/Hystrix

Timeouts, Retries, Exponential Backo�
gh:Netflix/Histrix

Concurrency

Parallel execution.

13 / 73

https://github.com/Netflix/Hystrix

New Kinds of Errors
Leaky Abstractions

Timeouts

Transport Errors

Encoding/Parsing Errors

API Versioning

14 / 73

Beware of the Distributed Monolith

15 / 73

Fallacies of Distributed Computing
The network is reliable.
Latency is zero.
Bandwidth is infinite.
The network is secure.
Topology doesn't change.
There is one administrator.
Transport cost is zero.
The network is homogeneous.

16 / 73

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

Partial Failure

17 / 73

Gray Failure
When at least one app makes the observation

That the system is unhealthy

But the observer observes

That the system is healthy.

18 / 73

https://blog.acolyer.org/2017/06/15/gray-failure-the-achilles-heel-of-cloud-scale-systems/

Two Generals Problem
Pitfalls and design challenges of attempting to coordinate an

action by communicating over an unreliable link.

19 / 73

First computer communication problem to be proved to be
unsolvable.

20 / 73

FLP Imposibility Result
In an asynchronous network

21 / 73

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/

FLP Imposibility Result
In an asynchronous network

Where messages may be delayed but not lost

22 / 73

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/

FLP Imposibility Result
In an asynchronous network

Where messages may be delayed but not lost

There is no consensus algorithm that is guaranteed to
terminate in every execution for all starting conditions

23 / 73

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/

FLP Imposibility Result
In an asynchronous network

Where messages may be delayed but not lost

There is no consensus algorithm that is guaranteed to
terminate in every execution for all starting conditions

If at least one node may fail-stop.

24 / 73

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/

It's about consensus

Deals with ‘faulty nodes’

Nodes that aren’t receiving the messages that are being sent to
them are failed (Exempt from having to achieve consensus)

Partitioned node in FLP does not have to achieve consensus,

Since it is considered failed, but the same node in CAP must

25 / 73

Therefore it’s not possible to say whether a processor has
crashed or is simply taking a long time to respond.

The FLP result shows that in an asynchronous setting, where
only one processor might crash,

There is no distributed algorithm that solves the consensus
problem.

26 / 73

CAP theorem

27 / 73

CAP theorem

28 / 73

Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services
In an asynchronous network

Where messages may be lost

It is impossible to implement a sequentially consistent atomic
read/write register

That responds eventually to every request under every
pattern of message loss.

29 / 73

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.1495

It's about serialized atomic objects (registers)

Deals with ‘partitions’

Nodes that aren’t receiving the messages that are being sent to
them are only partitioned

A CAP solution requires that any live node be able to correctly
serve requests, even if it has not received any messages

30 / 73

That A, it doesn't mean what you thing it means
Availability refers to a liveness property of an algorithm
where every request to a non-failing node must eventually
return a valid response.

Not Availability of the system, the system can fail for other
reasons.

Don’t Settle For Eventual Consistency

The Limits of the CAP Theorem

31 / 73

https://yokota.blog/2017/02/17/dont-settle-for-eventual-consistency/
https://www.cockroachlabs.com/blog/limits-of-the-cap-theorem/

Scalability! But at what COST?
COST of distributed systems: the Configuration that

Outperforms a Single Thread

32 / 73

https://blog.acolyer.org/2015/06/05/scalability-but-at-what-cost/

33 / 73

34 / 73

Scalability! But at what COST?
Many published systems have unbounded COST

(They never outperform the best single threaded application)

Others are orders of magnitude slower even when using
hundreds of cores.

35 / 73

https://blog.acolyer.org/2015/06/05/scalability-but-at-what-cost/

36 / 73

Lord, grant me the strength to accept systems that can run in
one node/process,

37 / 73

Lord, grant me the strength to accept systems that can run in
one node/process,

the courage to handle the distributed systems I have to,

38 / 73

Lord, grant me the strength to accept systems that can run in
one node/process,

the courage to handle the distributed systems I have to,

and the wisdom to know the difference.

39 / 73

But ...

40 / 73

Cars are distributed systems
"Analysts predict that the on-board computing power of a
normal saloon will increase by 100x from 2016 to 2025,
powering ADAS and IVI functions."

"ADAS combines information from the many sensors dotted
all over the car, feeding into a large processing unit that
makes sense of the data, and makes decisions in real time.
These sensors include radar, lidar, ultrasonic and cameras"

The future of automotive is coming faster than you think

41 / 73

https://community.arm.com/processors/b/blog/posts/the-future-of-automotive-is-coming-faster-than-you-think

What is this?
"Each core has an integrated network interface and a router,
with each router connected to the four routers around it
There are algorithms designed to reduce congestion, ... but a
basic system will have buffers and queues and will know
how busy the local network congestion is."

42 / 73

What is this?
"Each core has an integrated network interface and a router,
with each router connected to the four routers around it
There are algorithms designed to reduce congestion, ... but a
basic system will have buffers and queues and will know
how busy the local network congestion is."

Your new CPU

Intel Skylake-X: The New Core-to-Core Communication
Paradigm

43 / 73

http://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/5

You need at least 2 computers for availability

44 / 73

Other Distributed Systems
Data Store*
Mobile Apps
Data Processing Pipeline*
IoT
Microservices
Currency*
Games*

45 / 73

What to do about those?
We have to answer at least this questions:

Who Does This?
Who Knows This?
When did This Happen?

And detect problems as soon as posible

46 / 73

Who Does This?

47 / 73

Amazon's Dynamo Paper

48 / 73

http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf

Shameless Plug
The Little Riak Core Book

49 / 73

https://marianoguerra.github.io/little-riak-core-book/

Distributed Virtual Actors
Orleans - Virtual Actors

Erlang: gh:SpaceTime-IoT/erleans

50 / 73

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/
https://github.com/SpaceTime-IoT/erleans

Distributed "Transactions"
Sagas

gh:mrallen1/gisla

51 / 73

https://github.com/mrallen1/gisla

Spark - Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing

Spark Streaming - Discretized Streams: Fault-Tolerant
Streaming Computation at Scale

52 / 73

https://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
https://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf

Who Knows This?

53 / 73

Consensus
Paxos

ZAB

Raft (Vis 1, Vis 2)

More

54 / 73

https://blog.acolyer.org/2015/03/03/the-part-time-parliament/
http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/
https://raft.github.io/
http://thesecretlivesofdata.com/raft/
https://raft.github.io/
https://blog.acolyer.org/2015/03/01/cant-we-all-just-agree/

HyParView a membership protocol for reliable gossip-based
broadcast

Erlang: lasp/partisan

Epidemic Broadcast Trees

Erlang: plumtree

55 / 73

http://asc.di.fct.unl.pt/~jleitao/pdf/dsn07-leitao.pdf
https://github.com/lasp-lang/partisan
http://www.gsd.inesc-id.pt/~jleitao/pdf/srds07-leitao.pdf
https://github.com/helium/plumtree

Convergent and Commutative Replicated Data Types

56 / 73

https://blog.acolyer.org/2015/03/18/a-comprehensive-study-of-convergent-and-commutative-replicated-data-types/

A Conflict-Free Replicated JSON Datatype

57 / 73

https://arxiv.org/abs/1608.03960

Lasp

Lasp is a suite of libraries aimed at providing a
comprehensive programming system for planetary scale Elixir
and Erlang applications.

@cmeik

58 / 73

http://lasp-lang.org/
https://twitter.com/cmeik

Merkle Trees
Git, IPFS, riak_core_metadata AAE

How does node 3 gets the values broadcasted while he was
down?

Gossip protocols, Epidemic Broadcast and Eventual
Consistency in Practice

59 / 73

http://marianoguerra.github.io/presentations/berlin-efl-2016/#/active-anti-entropy

60 / 73

Distributed Hash Tables

Bittorrent, IPFS, Erlang global*

Also: Consistent Hashing

gh:jlouis/dht

61 / 73

https://github.com/jlouis/dht

When did This Happen?

62 / 73

Time, clocks and the ordering of events in a distributed
system

Virtual Time and Global States of Distributed Systems

Dotted Version Vectors: Efficient Causality Tracking for
Distributed Key-Value Stores

ACM: Why Logical Clocks are Easy

63 / 73

http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf
http://courses.csail.mit.edu/6.852/01/papers/VirtTime_GlobState.pdf
http://gsd.di.uminho.pt/members/vff/dotted-version-vectors-2012.pdf
http://queue.acm.org/detail.cfm?id=2917756

Atomic Clocks!
Inside Cloud Spanner and the CAP Theorem

64 / 73

https://cloudplatform.googleblog.com/2017/02/inside-Cloud-Spanner-and-the-CAP-Theorem.html

Avoiding Problems

65 / 73

Simple testing can prevent most critical failures

Early detection of configuration errors to reduce failure
damage

66 / 73

https://blog.acolyer.org/2016/10/06/simple-testing-can-prevent-most-critical-failures/
https://blog.acolyer.org/2016/11/29/early-detection-of-configuration-errors-to-reduce-failure-damage/

Quick Check

Concuerror

TLA+

Lineage-driven Fault Injection

Jepsen

Simian Army

67 / 73

https://en.wikipedia.org/wiki/QuickCheck
http://concuerror.com/
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
https://blog.acolyer.org/2015/03/26/lineage-driven-fault-injection/
https://aphyr.com/tags/jepsen
https://github.com/Netflix/SimianArmy

Learn TLA

TLA+ in Practice and Theory Part 1: The Principles of TLA+

68 / 73

https://www.learntla.com/
https://pron.github.io/posts/tlaplus_part1

A = foo()
B = bar(A)
do_something(A, B)

Life was simpler, wasn't it?

Let's enjoy single node systems... while we can :)

69 / 73

Resources
Aphyr's Distributed Systems Class Notes

Designing Data-Intensive Applications

70 / 73

https://github.com/aphyr/distsys-class
http://dataintensive.net/

People
Adrian Colyer @adriancolyer

Aphyr @aphyr

Christopher Meiklejohn @cmeik

Eric Brewer @eric_brewer

Peter Alvaro @palvaro

Peter Bailis @pbailis

71 / 73

https://blog.acolyer.org/
https://aphyr.com/
http://christophermeiklejohn.com/
http://research.google.com/pubs/EricBrewer.html
https://people.ucsc.edu/~palvaro/
http://www.bailis.org/

Thanks

72 / 73

Swarm Intelligence: http://ncase.me/fireflies/

73 / 73

http://ncase.me/fireflies/

