
Fixing Erlang’s
Distribution Protocol

Peer Stritzinger, Erlang User Conference
Stockholm, June 2017

Self-networked units
= multi channel virtual device

Application

• Next Generation RFID System

• Industry 4.0, Smart Factory System

• Distributed data sharing and material routing in Erlang

• Programmability by PLC Programmers

• Research Project: Cyber-physical IT-Systems to handle the
complexity of a new Generation of multi adaptive Factories

Scaling Solutions

• SD Erlang

• Hidden nodes

• Ditching Erlang Distribution

• Fixing Erlang Distribution

Hidden nodes
• Connect only when communicated to

• „Invisible“ to to normal nodes() so won’t get
connected by global e.al.

• Start hidden node: erl -hidden

• Use nodes/1 function to query

• Connected hidden nodes can be monitored

Hidden Nodes (cont.)

• erlang:send/3 option noconnect

• Sending to {name, node}

• All of net_kernel

• Topology and routing on application level

Fixing Erlang Distribution

• Fully connected network can't scale

• Head of line blocking of large messages

• Possible concurrency issues

• Hard Realtime networking

• Security in hostile networks

OTP Team ongoing

• Heterogenous

• Distributed Hash Table to replace

• Link management

epmd
• Some epmd support or replacement is possibly

needed for other protocols

• Pure Erlang epmd implementation eases extending

• Already used to ease small embedded systems
integration like http://www.grisp.org/

• Adopted by OTP team

 https://github.com/erlang/epmd

Plug in another distribution
transport protocol

• Command line -proto_dist mod makes distribution call
mod_dist

• Module implementing: childspecs/0, listen/1, accept/1,
accept_connection/5, setup/4, close/1, select/1,
is_node_name/1

• Port driver also needed, is called by
erts_schedule_dist_command() see otp/erts/emulator/
beam/dist.h

• More details http://www.erlang.org/doc/apps/erts/alt_dist.html

Node to Node Link

Driver

Procbinary
to term

Proc

Proc

Proc term to
binary

Proc term to
binary

Proc term to
binary

Driver

TCP/IP

binary
to term

binary
to term

Demo

#define ERTS_DIST_MSG_DBG

#define ERTS_RAW_DIST_MSG_DBG

Message Routing

• Direct TCP connections to all nodes are a
scalability hindrance

• Dynamic connection management can help some
applications

• Forwarding received messages towards another
connected node

Message Forwarding

• Routing table lookup

• Filled and updated from the Erlang level

• Used for quick lookup inside ERTS

• Can be used for heterogenous link decision too

Static routing

Wikimedia,NerdBoy1392 • CC BY-SA 3.0

Routing protocols
• Discover network graph

 topology

• Shortest path

• Minimal weighted paths

• Detect changes, update topology and distribute to
nodes

Link State Protocols
• Every node floods network with neighbor topology

• Link State Packets (LSP)

• When converged every node knows the whole
network connection graph

• Every Node calculates Minimum Distance
Spanning tree = shortest Route to every other node

• Packet Forwarding according to this

Variants in use
• Inter System to Inter System (IS-IS)

• ISO/IEC 10589:2002

• Open Shortest Path First

• RFC2328 (v2 for IPv4)

• RFC5340 (vs for IPv6)

Routed Messages

• Can get out of order

• Can get lost

• Can go in circles

Invariants to be observed

• Any message from a node will be after nodeup and
before nodedown

• Messages between any process pair need to stay
ordered

Requirements

• Reordering messages between two processes

• Detecting messages lost

• Drop messages that go in circles

Sequence Numbers

• Separate counter per {From, To} pair

• Buffer message that are ahead

• Missing message is detected after a timeout

• Old messages that arrive after newer ones are
consumed are dropped

Message Loss?

• Backwards compatible semantics

• Trigger a nodedown+nodeup on loss

• Optionally different semantics

• Tell process there were lost messages

 Message Sending Options

• Out of order messages

• Unreliable messages

• Hard realtime messages

• Options

• erlang:send or per Process

Head of Line Blocking
• Send large messages in chunks

• Fragment numbers

• Scheduling

• Use secondary TCP connections

• But potential scalability issue here

Possible optimizations

• Start sending the first chunks while encoding is
ongoing

• Reassemble and decode in process context

• Hybrid Gossip Protocols

• CRDTs

• Computation at the edge

Ditching the Data Center:
 How to Stop Worrying and Love
the Edge
Peter Van Roy
Professor at UCL and Coordinator of LightKone

16:00 Mälarsalen

www.grisp.org
http://www.stritzinger.com

Open for pre-order now
Delivery start end of June

@peerstr @grisporg
https://github.com/grisp

Talk Adam
Lindberg Fri

14:55

