erlang at hover.in

Bhasker V Kode
co-founder & CTO at hover.in

at Erlang Factory, London
June 26, 2009

http://developers.hover.in

brief introduction to hover.in

choose words from your blog, & decide what content / ad

you want when you hover™ over it
* or other events like click,right click,etc

or...
the worlds first publisher driven

in-text content & ad delivery platform...
or

lets web publishers push client-side event handling to the
cloud, to run various rich applications called hoverlets

demo at and
more at

http://developers.hover.in

http://start.hover.in/
http://hover.in/demo
http://hover.in/
http://developers.hover.in/blog/

<html> <body>
<a href="http://facebook.com” title="

" > facebook
profile from crunchbase

<a title=" "
href="#">election tweets

<a href="#" tit|e=" "
> Iphone on NY T

<a title=" "
href="#" >cooking videos from youtube.

<script src="http://start.hover.in/script" id="hi_start" type="text/javascript"></script>

</body><html> http://developers.hover.in

http://onclick.hover.in/hoverlet/hover.in/crunchbase/facebook
http://onclick.hover.in/hoverlet/hover.in/twittersearch/election
http://onclick.hover.in/hoverlet/hover.in/nytimes/iphone
http://onclick.hover.in/hoverlet/hover.in/relatedyoutube/cooking

> hover.in founded late 2007

http://developers.hover.in

> hover.in founded late 2007

> the web ~ 10- 20 years old

http://developers.hover.in

> hover.in founded late 2007
> the web ~ 10- 20 years old

> humans 100's of thousands of years

http://developers.hover.in

> hover.in founded late 2007
> the web ~ 10- 20 years old
> humans 100's of thousands of years

> but bacteria.... around for millions of years
... S0 this talk is going to be about what we can
learn from bacteria, the brain, and memory in
a concurrent world followed by hover.in's erlang
setup and lessons learnt

http://developers.hover.in

(0)\%
(0)\%

Should we glow underwater.erl

(0)\%
(0)\%

query each cell's protein and 1if

o©
o©

total +ves pass some value, then glow!

%% process spawned to hold state of +ves

Pid = spawn(fun()->
should we glow(0,length(Cells),0)
end)

$% queryilng cell protelin ,message passing

[Pid !{in, Cell } || Cell < Cells]

http://developers.hover.in

should we glow(Ctr, Max, Acc)->

receive
{in,Cell}->
One or zero = should i glow(Cell),

case Ctr of
Max -> done;
>
case Acc of
?SOME VAL ->
glow for 8 hours(), done;
- — I

NewAcc = One_ or zero + Acc,
should we glow(Ctr+1l,Max,NewAcc)

end;

-> error

end http://developers.hover.in

some traits of bacteria

* each bacteria cell spawns its own proteins

* All bacteria have some sort of some presence
& replies associated, (asynchronous comm.)

* group dynamics exhibits 'list fold"ish operation

* only when the Accumulator is > some guard
clause, will group-dynamics of making light
(bioluminiscence) work (eg: in deep sea)

http://developers.hover.in

spawning, in practice

* for a single google search result, the same
requests are sent to multiple machines(~1000
as of 09), which ever replies the quickest wins.

* in amazon's dynamo architecture that powers
S3, use a (3,2,2) rule . ie Maintain 3 copies of
the same data, reads/writes are succesful only
when 2 concurrent requests succeed. This ratio
varies based on SLA, internal vs public service.
(more on conflict resolution...)

http://developers.hover.in

pattern matching behaviour

* each molecule connects to its specific receptor
protein to complete the missing piece,to trigger
the group behaviour that are only succestful
when all of the cells participate in unison.

* Type = case UserType of
user -> true;
admin -> true;
_Else ->false

end

http://developers.hover.in

supervisors, workers

* as bacteria grow, they split into two. when
muscle tears, it knows exactly what to replace.

* erlang supervisors can decide restart policies: if
one worker fails, restart all or if one worker
fails, restart just that worker, more tweaks.

* can spawn multiple workers on the fly, much
like the need for launching a new ec2 instant

http://developers.hover.in

Inter-species communication

* if you look at your skin — consists of very many
different species, but all bacteria found to
communicate using one common chemical

language.

http://developers.hover.in

Inter-species communication

iIf you look at your skin — consists of very many
different species, but all bacteria found to
communicate using one common chemical
language.
hmmmmmmmmmmmmmmmmmmm..............
....serialization ?!

....a common protein interpretor ?!

....0r perhaps just-in-time protein compilation?!

http://developers.hover.in

Interspecies comm. in practice

> attempts at serialization , cross language
communication include:

> thrift (by facebook)
> protocol buffers (by google)

> en/decoding , port based communication (erlang<-
>python at hover.in)

> rabbitMQ shows speeds of several thousands of
msgs/sec between python <-> erlang (by using...?)

http://developers.hover.in

talking about scaling

The brain of the worker honeybee weighs about
1mg (~ 950,000 neurons)

* Flies acrobatically , recognizes patterns,
navigates , communicates, etc

* Energy consumption: 10-15 J/op, at least 106
more efficient than digital silicon neurons

http://developers.hover.in

the human brain

100 billion neurons, stores ~100 TB

Differential analysis e.g., we compute color
Multiple inputs: sight, sound, taste, smell, touch
Facial recognition subcircuits, peripheral vision

iIn essence - the left & right brain vary in:
left -> persistent disk , handles past/future
right -> temporal caches! , handles present

http://developers.hover.in

iIn-memory is the new embedded

* servers as of '09 typically have 4 - 16 GB RAM

* stats of how companies are adding nodes

http://developers.hover.in

iIn-memory is the new embedded

caching systems avoid disk/db makes sense

caching systems for processing tasks makes

sense

but

keeping your entire data in-memory by having N

number of nodes ?

http://developers.hover.in

iIn-memory is the new embedded

* keeping your entire data in-memory by having N
number of nodes , (where N = total data in gb /
max ram per node) is like ...

— building a billion dollar company with 999 milion
dollars of funding!
or

— having only a right brain !

* surely we can do better than that!

http://developers.hover.in

INn-memory capacity planning

* No matter how many machines you have, and
how many cores, in production level — your
product could be defined by how well you
design your in-memory / RAM strategies.

* alternatives to avoid swapping could be — just
leaving results partioned on diff nodes, or
additional tasks to reduce the data-load further
until they can fit in memory

http://developers.hover.in

INn-memory capacity planning

* parallizing jobs in-memory is a lot of fun...

° but...

* more often bottleneck will not be how well you
can paralliize, but how much you need to
parallize so that memory does'nt swap (eg: || db
reads)

http://developers.hover.in

#1 shard thy data to make it sufficiently un-related

* typical web backends — all user data in one
table — then clustering just splits that on artibary
basis. eqg: query user table where id=user1,

* what if you have N concurrent process's
accessing N diff user tables — no locks, you can
|'ze & results can come back asynchronously
since sufficiently un-related.

* Warning: but more atoms (list_to_atom atoms
aren't garbage collected) http://developers.hover.in

#2 implementing flowcontrol

* great to handle both bursts or silent traffic & to
determine bottlenecks.(eg ur own,rabbitmqg,etc)

* egl: when we addjobs to the queue, if it takes
greater than X consistently we move it to high
traffic bracket, do things differently, possibly
add workers or ignore based on the task.

* eg2: amazon shopping carts, are known to be
extra resilient to write failures, (dont mind
multiple versions of them over time)

http://developers.hover.in

#3 all data is important, but some less important

* priority queue used to built heat-seeking algo
(priority to crawl webpages that get more hits
rather than depth-first or breadth-first)

* can configure max number of buckets
* can configure max number of urls per bucket

* can configure pyramid like queue. (moving
from lower buckets to higher is easier than
moving from high to higher)

http://developers.hover.in

erlang in a crawler architecture ?

* each time a hit occurs for a url, it moves from bucket N
to bucket N+1

http://developers.hover.in

erlang in a crawler architecture ?

* each time a hit repeats for a URL , it moves from
bucket N to bucket N+1

* crawls happen from top down (priority queue)

http://developers.hover.in

erlang in a crawler architecture ?

each time a hit repeats for a URL , it moves from
bucket N to bucket N+1

crawls happen from top down (priority queue)

so the bucket is locked, so that locked urls dont keep
move up anymore

http://developers.hover.in

erlang in a crawler architecture ?

each time a hit repeats for a URL , it moves from
bucket N to bucket N+1

crawls happen from top down (priority queue)

so the bucket is locked, so that locked urls dont keep
move up anymore

each user/site has their own priority queues, which
keep shifting round-robin after every X urls crawled
per user/site

http://developers.hover.in

erlang in a crawler architecture ?

each time a hit repeats for a URL , it moves from
bucket N to bucket N+1

crawls happen from top down (priority queue)

so the bucket is locked, so that locked urls dont keep
move up anymore

each user/site has their own priority queues, which
keep shifting round-robin after every X urls crawled
per user/site

python crawler leaves text files which dirty loaded into
fragmented mnesia

http://developers.hover.in

#3 time spent x RAM utilization = a constant

eq. of || db reads

#4 before every succesful persistent write & after
every succesful persistent read is an in-memory one

eg: hi_cache_worker's used to build

most recent queue's

http://developers.hover.in

#5 before every succesful persistent write & after
every succesful persistent read is an in-memory one

* you listen to a phone number in batch's of 3 or 4
digits. the part that absorbs just before writing
(temporal), until you write into your contact book
or memorize it (persistent)

* eg: If LRU cache exists in-memory, like 100
most recent url's or tags, then no need to parse
server logs for computation, try during writes
itself . No logs, no files. live buzz analytics!

http://developers.hover.in

#6 know thy RAM, trial/error to find ideal dataload

* eQ: || db reads if || happens so fast, mem probs

* replication vs location transparency, are they
fragmented, are some nodes read-only ? (rpc...)

* heed metadata for which node to acess for useri,
(or use hashing fn like memcache)

* are tables in-memory (right brain), cached from
disk , or on disk alone (left brain)

* fortunately mnesia allows highly granular choices

http://developers.hover.in

#7 what cannot be measured cannot be improved

* you can't improve what you can't measure. an
iInvestment in debugging utilities is a good
iInvestment

* looking forward to debugging with dtrace,gproc
etc but until then — just a set/get away!

* using tsung (written in erlang again) — load
performance testing tool, for simulating 100's of
concurrent users/requests , and great for
analysing bottlenecks of your system GDINS).\ .e.in

hi_cache worker

* a circular queue implemented via gen_server

* set (ID , Key, Value , OptionsList)

Options are {purge, <true| false>}
size , <integer> }
set callback , <Function> }
delete callback , <Function> }
get_callback , <Function> }

{ timeout, <int>, <Function> }

ID is usually a siteid or “global”

{
{
{
{

http://developers.hover.in

* C = hi_cache_ worker,
C:set (User1, “recent_saved”, Value)
C:set (“global”, “recent_hits” , Value
[{size,1000}])

C:get (“global”,’recent_voted”)
C:get (User1,’recenthits”)
C:get (User1,’recent_cron_times”)

* (Note: initially used in debugging internally ->
then reporting -> next in public community stats)

http://developers.hover.in

/ rules of in-memory capacity planning

1) shard thy data to make it sufficiently un-related
2) implementing flowcontrol

(1)
(2)
(3) all data is important, but some less important
(4) time spent x RAM utilization = a constant

(5)

5) before every succesful persistent write & after
every succesful persistent read is an in-memory one

(6) know thy RAM, trial/error to find ideal dataload

(7) what cannot be measured cannot be improved

http://developers.hover.in

summary of erlang at hover.in

LYME stack since ~dec 07, 3 nodes (64-bit 4gb)

python crawler, associated NLP parsers, cpu time-
splicing algo's for cron's app, configurable priority
queue's for heat-seeking algo's app, flowcontrol
app , caching app , pagination app for memoizing

remote node debugger, cyclic queue workers, Iru
cache workers , headless-firefox for thumbnails

touched 1 million hovers/month in May'09 after
launching closed beta to publishers in ﬂt%:r)/ d(e)vglopers.hover.in

summary of our erlang modules

rewrites.erl error.erl frag_mnesia.erl hi_api_response.erl hi_appmods_api_user.erl
hi_cache_app.erl, hi_cache_sup.erl hoverlingo.erl hi_cache worker.erl
hi_lru_worker.erl hi_classes.erl hi_community.erl
hi_cron_hoverletupdater_app.erl hi_cron_hoverletupdater.erl
hi_cron_hoverletupdater_sup.erl hi_cron_kwebucket.erl hi_crypto.erl
hi_flowcontrol _hoverletupdater.erl hi_htmlutils_site.erl hi_hybridg_app.erl
hi_hybridg_sup.erl hi_hybridg_worker.erl hi_login.erl hi_mailer.erl
hi_messaging_app.erl hi_messaging_sup.erl hi_messaging_worker.erl
hi_mgr_crawler.erl hi_mgr_db_console.erl hi_mgr_db.erl hi_mgr_db_mnesia.erl
hi_mgr_hoverlet.erl hi_mgr_kw.erl hi_mgr_node.erl hi_mgr_thumbs.erl
hi_mgr_traffic.erl hi_nlp.erl hi_normalizer.erl hi_pagination_app.erl
hi_pagination_sup.erl, hi_pagination_worker.erl hi_pmap.erl hi_register_app.erl
hi_register.erl, hi_register_sup.erl, hi_register_worker.erl
hi_render_hoverlet_worker.erl hi_rrd.erl , hi_rrd_worker.erl hi_settings.erl
hi_sid.erl hi_site.erl hi_stat.erl hi_stats_distribution.erl hi_stats _overview.erl
hi_str.erl hi_trees.erl hi_utf8.erl hi_yaws.erl http://developers.hover.in

references

* http://developers.hover.in

* shoutout to everyone at #erlang !

* amazing brain-related talks at

* go read more about the brain and hack on
erlang NOW!

http://developers.hover.in

http://erlang.org/
http://memcached.org/
http://rabbitmq.org/
http://highscalability.com/
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://ted.com/

thank you

http://developers.hover.in

