
The Smarkets Platform

Hunter Morris
CTO & Co-founder

Intro to Prediction Markets
● “Binary event futures”
● Members trade pre-written contracts with others

Exchange Mechanics
● Price/time priority
● Single sorted order book
● Not trivially parallelisable

Exchange Mechanics
● Other parts are easy to distribute

● Individual accounts
● Individual orders
● Data streams

Member Activity
● Social streams of data
● “Challenges”
● Privacy filters
● Leaderboards
● Badges

Early Days
● Architecture is message-heavy
● Erlang is a natural fit
● Functional style is easier to prove
● Reliability is king

Erlang pitfalls
● Core web functionality missing
● Email?
● String manipulation?
● Web developer ease of use
● Web frameworks?

General Decimal Arithmetic
● http://speleotrove.com/decimal/
● IEEE 754 + IEEE 854
● Loads of unit tests

http://speleotrove.com/decimal/

General Decimal Arithmetic
● Open source?
● Anybody interested?
● 50% implemented (enough for our purposes)

NIH
● How difficult is it to create a web framework?

NIH
● VeryVery difficult

REST
● Building an API
● Tight HTTP
● Multiple representations

● JSON
● XHTML
● Atom

REST
● “Member-facing front-end uses our own API”

● Eating our own dog food

EWGI
● Erlang Web Gateway Interface
● Conceived by Filippo Pacini
● Similar to Python's WSGI
● PEP 333

EWGI
● Components are middleware
● Standard interface for building components
● Functional

EWGI
● Multiple hosting implementations

● Mochiweb
● Yaws
● Inets
● Nginx C module

Smak
● REST toolkit“ ”

● Flexible URL routing
● Regular expressions
● Erlang patterns

Smak
● Define resources as property lists
● Base resource handling by default
● Sort of a light-weight object orientation

Smak
● Stateless
● Each component is easy to test independently
● Mock requests/data

Persistence
● Append-only files
● Minimal memory overhead
● No file seeks

Persistence
● Some data is very unstructured

Persistence
● CouchDB

● You may have heard of it
● If not, it's very cool, so you should check it out
● Naturally distributable

Persistence
● Couch can be used for bank transactions“ ”

● Eventual consistency is (often) perfectly
acceptable

Safety
● Node failures happen often
● Traditional backups are too infrequent

Safety
● Process transaction logs
● Slave processes maintain state
● Snapshots

Safety
● Introducing AMQP
● Open protocol for messaging
● Crosses many domains
● “Durable message queues”

● See talk from yesterday

Eventual consistency
● Messaging topography
● Not everything must happen straight away

Eventual consistency
● A kind of data quality of service“ ”

● Prioritise sets of data
● Members don't need account history every instant,

for example

Logging
● RabbitMQ has very flexible topography
● Separate physical location
● Back up data

Request statelessness
● Try wherever possible
● Allows for simple scalability

Request statelessness
● Independently testable
● No need for node affinity
● Buffering processes allow front-end architecture

to vary independently from back-end

Testing
● State machines
● Transitions are predictable

● Coverage analysis
● Natural unit tests

Testing - Requests
● Mock HTTP requests
● EWGI makes this very simple

Testing - Data
● CouchDB easy to imitate“ ”

● Mock service

Testing Messaging–

● Slightly more complex
● Sequence is important

Questions?
● Hunter Morris
● hunter.morris@smarkets.com
● http://smarkets.com/
● http://github.com/skarab/

mailto:hunter.morris@smarkets.com
http://smarkets.com/
http://github.com/skarab/

