
LambdaStream

Developing a Set Top Box Middleware in
Erlang

Controlling Miscellaneous Stuff in an Embedded System

Samuel Rivas

LambdaStream S.L. samuel.rivas@lambdastream.com

London, 2009



LambdaStream

The Target System

• Home Entertainment Device,
with optional hard disk
and many inputs and outputs.

• DTV, local file playback,
streaming, PVR

• Export and import network
file systems

• User applications



LambdaStream

Many questions

• How to interface with the user?
• How to control all the possibilities of the hardware?



LambdaStream

Many questions

• How to control every possible concurrent task?



LambdaStream

Many questions

• How to allow third parties to develop applications?
• How to take advantage of Internet access?



LambdaStream

We Can Do It

You’ll need a middleware to handle that many concurrent tasks.
Should we suggest Erlang?



LambdaStream

Challenges

• Crosscompile Erlang to the target platform
• Define a versatile architecture to:

• Allow third party plugins
• Interface low level drivers and SO services

• Build a flexible engine for the local GUI
• Find a solution to allow remote GUIs



LambdaStream

Crosscompile Erlang

• We failed crosscompiling R11B-5 for mipsel
• But we managed to crosscompile R12B-1
• Haven’t tried any harder



LambdaStream

Architecture

Control Service

PluginsNative GUIRemote GUI

Internal Drivers

*

*



LambdaStream

Talking to C Drivers

Control

Internal Drivers

• We cannot use linked-in drivers
because some drivers require
the executing process to finish
to release memory and resources.

• Ports are tedious and cumbersome.
• Must handle living threads and fast,

finite operations.
• EDTK and Dryverl wouldn’t fit with

living C threads sending messages.



LambdaStream

Yet another framework to connect C and Erlang
Generic Erlang–C Connection Framework

• Handles the communication between C and Erlang
using a port.

• Delegates the specific behaviour in pluggable modules
(compiled .so files).

• Generic API to call C funcions from the Erlang side.
• Each call from Erlang runs in a separate thread in the

C side.
• C side can send messages back to Erlang.



LambdaStream

Yet another framework to connect C and Erlang
Erlang Example

play(Url) ->
Binary = list_to_binary(Url),
dfb_facade:sync_call(

[{play_url, <<Binary/binary, 0>>}]).



LambdaStream

Yet another framework to connect C and Erlang
Registering C calls (simplified source)

void DFBERL_LOAD_FUNC(State state) {
MethodRunner runner;

runner = methodRunnerNew("play_url", play);
registerRunner(state, runner);

}



LambdaStream

Yet another framework to connect C and Erlang
C Example (simplified source)

gboolean play(Call call, Context context) {

url = (gchar *) ERL_BIN_PTR(call -> args);

if (av_play(url) != AV_RETURN_OK) {
return FALSE;

}
sendResponse(context -> encoder, call -> id,

erl_format("ok"));
return TRUE;

}



LambdaStream

Yet another framework to connect C and Erlang
Handling Data

The easy example
<<Binary/binary, 0>>

url = (gchar *) ERL_BIN_PTR(call -> args);

But types are seldom so simple
• Too much code to adapt C and Erlang data types.
• Too many heavyweight memory copying operations.
• Too many sanity checks.



LambdaStream

Yet another framework to connect C and Erlang
Handling Data

• Avoid erl-interface implementing efficient, ad-hoc
marshaling/unmarshaling operations for each type

• Write a code generator for that.

Type Definition
{transcoder_info,
{complex, [{"Type", transcoder_type},

{"BitRate", integer},
{"Width", integer},
{"Height", integer}]}}.



LambdaStream

GUI
Use the erlang to C adaptation?

Drawing graphics and handling input events
• Control can access DirectFB as a driver.
• But GUI developers wouldn’t use erlang calls to develop.

Experimental engine for interactive applications
• Screen descriptions using a declarative language
• Handle user input and focus management
• Incremental drawing to increase performance
• Way too much work



LambdaStream

GUI
HTML + Javascript?

Why not use an HTML browser?

Advantages
• GUI developers are familiar with the model
• Easy to use for remote interfaces as well
• Can surf the web!

Drawbacks
• Without advanced CSS + Javascript, interfaces look aged
• Fully capable browsers are heavyweight
• Devised for mice, not for remote controllers



LambdaStream

Use Webkit in our GUI

WebKit

• Small storage and memory footprint
• Powerful javascript engine
• CSS 3
• GTK backend that sits on top of

DirectFB
• There are some embedded devices

already using it



LambdaStream

Advanced JavaScript GUI
Based on Focus and Key Press Events



LambdaStream

Advanced JavaScript GUI
Alphachannel Blending With Video Layers



LambdaStream

Advanced JavaScript GUI
Alphachannel Blending With Video Layers



LambdaStream

Advanced Javascript GUI
Talking to C drivers from JavaScript?

But, how do you ...
• Make that fancy list of files?
• Configure the network??
• Play a video in the background???

We must extend the javascript API
• Should we patch WebKit’s JS engine?
• Sounds a bit scary ...



LambdaStream

Advanced JavaScript GUI
Code Snippet

function files_click(oEvent) {
var target = $(oEvent.target);
var path = target.attr(’video_path’)

switch(target.attr(’logo_id’)) {
case ’video’:

loading_start();
player.play("file://" + path,

function(oError) {
loading_stop();

[...]



LambdaStream

Connecting the GUI to the rest of the architecture

Connect the GUI with the player, file system, etc.?
• From Erlang, we can control all the functionality, including

the C drivers.
• The Erlang part is the General Manager, the interface

should contact it, not the drivers

No!! We must connect the GUI with Erlang
How do you connect a browser to something?



LambdaStream

Connecting the GUI to the rest of the architecture
HTTP Server

HTTP Server

Control

Native GUI (localhost) External Browser

Erlang Beam



LambdaStream

HTTP Protocol

• The server interprets POST requests as commands
• Interchange of JSON objects
• Use comet to implement “asynchronous” communication
• Notify results and events through the comet connection

You can use that protocol in JavaScript using XmlRpcRequest



LambdaStream

HTTP Protocol
Examples

Connecting to the server
POST http:/localhost/1.0/connect

{"id": "7045697"}

No response ...



LambdaStream

HTTP Protocol
Examples

Starting a video playback
POST http:/localhost/1.0/rpc

{"id": "7045697", "cmd": "play",
"arg": {"url": "file:///erlang-the-movie.avi"}}

Server Response
{"code":"ok,"ref":"92384"}



LambdaStream

HTTP Protocol
Examples

Connecting to the server
POST http:/localhost/1.0/connect

{"id": "7045697"}

No response ... til now!

Server Response
{"ref":"92384","result":"ok"}



LambdaStream

Conclusion

• Write C drivers to control small tasks related to the
hardware and the OS

• Provide a platform for GUI developers
• Tie them to an Erlang program controlling all the stuff



LambdaStream

Developing a Set Top Box Middleware in
Erlang

Controlling Miscellaneous Stuff in an Embedded System

Samuel Rivas

LambdaStream S.L. samuel.rivas@lambdastream.com

London, 2009


