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The Target System

• Home Entertainment Device,
with optional hard disk
and many inputs and outputs.

• DTV, local file playback,
streaming, PVR

• Export and import network
file systems

• User applications
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Many questions

• How to interface with the user?
• How to control all the possibilities of the hardware?



LambdaStream

Many questions

• How to control every possible concurrent task?
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Many questions

• How to allow third parties to develop applications?
• How to take advantage of Internet access?
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We Can Do It

You’ll need a middleware to handle that many concurrent tasks.
Should we suggest Erlang?
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Challenges

• Crosscompile Erlang to the target platform
• Define a versatile architecture to:

• Allow third party plugins
• Interface low level drivers and SO services

• Build a flexible engine for the local GUI
• Find a solution to allow remote GUIs
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Crosscompile Erlang

• We failed crosscompiling R11B-5 for mipsel
• But we managed to crosscompile R12B-1
• Haven’t tried any harder
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Architecture

Control Service

PluginsNative GUIRemote GUI

Internal Drivers

*

*
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Talking to C Drivers

Control

Internal Drivers

• We cannot use linked-in drivers
because some drivers require
the executing process to finish
to release memory and resources.

• Ports are tedious and cumbersome.
• Must handle living threads and fast,

finite operations.
• EDTK and Dryverl wouldn’t fit with

living C threads sending messages.
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Yet another framework to connect C and Erlang
Generic Erlang–C Connection Framework

• Handles the communication between C and Erlang
using a port.

• Delegates the specific behaviour in pluggable modules
(compiled .so files).

• Generic API to call C funcions from the Erlang side.
• Each call from Erlang runs in a separate thread in the

C side.
• C side can send messages back to Erlang.
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Yet another framework to connect C and Erlang
Erlang Example

play(Url) ->
Binary = list_to_binary(Url),
dfb_facade:sync_call(

[{play_url, <<Binary/binary, 0>>}]).
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Yet another framework to connect C and Erlang
Registering C calls (simplified source)

void DFBERL_LOAD_FUNC(State state) {
MethodRunner runner;

runner = methodRunnerNew("play_url", play);
registerRunner(state, runner);

}
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Yet another framework to connect C and Erlang
C Example (simplified source)

gboolean play(Call call, Context context) {

url = (gchar *) ERL_BIN_PTR(call -> args);

if (av_play(url) != AV_RETURN_OK) {
return FALSE;

}
sendResponse(context -> encoder, call -> id,

erl_format("ok"));
return TRUE;

}



LambdaStream

Yet another framework to connect C and Erlang
Handling Data

The easy example
<<Binary/binary, 0>>

url = (gchar *) ERL_BIN_PTR(call -> args);

But types are seldom so simple
• Too much code to adapt C and Erlang data types.
• Too many heavyweight memory copying operations.
• Too many sanity checks.
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Yet another framework to connect C and Erlang
Handling Data

• Avoid erl-interface implementing efficient, ad-hoc
marshaling/unmarshaling operations for each type

• Write a code generator for that.

Type Definition
{transcoder_info,
{complex, [{"Type", transcoder_type},

{"BitRate", integer},
{"Width", integer},
{"Height", integer}]}}.
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GUI
Use the erlang to C adaptation?

Drawing graphics and handling input events
• Control can access DirectFB as a driver.
• But GUI developers wouldn’t use erlang calls to develop.

Experimental engine for interactive applications
• Screen descriptions using a declarative language
• Handle user input and focus management
• Incremental drawing to increase performance
• Way too much work
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GUI
HTML + Javascript?

Why not use an HTML browser?

Advantages
• GUI developers are familiar with the model
• Easy to use for remote interfaces as well
• Can surf the web!

Drawbacks
• Without advanced CSS + Javascript, interfaces look aged
• Fully capable browsers are heavyweight
• Devised for mice, not for remote controllers
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Use Webkit in our GUI

WebKit

• Small storage and memory footprint
• Powerful javascript engine
• CSS 3
• GTK backend that sits on top of

DirectFB
• There are some embedded devices

already using it
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Advanced JavaScript GUI
Based on Focus and Key Press Events
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Advanced JavaScript GUI
Alphachannel Blending With Video Layers
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Advanced JavaScript GUI
Alphachannel Blending With Video Layers
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Advanced Javascript GUI
Talking to C drivers from JavaScript?

But, how do you ...
• Make that fancy list of files?
• Configure the network??
• Play a video in the background???

We must extend the javascript API
• Should we patch WebKit’s JS engine?
• Sounds a bit scary ...
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Advanced JavaScript GUI
Code Snippet

function files_click(oEvent) {
var target = $(oEvent.target);
var path = target.attr(’video_path’)

switch(target.attr(’logo_id’)) {
case ’video’:

loading_start();
player.play("file://" + path,

function(oError) {
loading_stop();

[...]
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Connecting the GUI to the rest of the architecture

Connect the GUI with the player, file system, etc.?
• From Erlang, we can control all the functionality, including

the C drivers.
• The Erlang part is the General Manager, the interface

should contact it, not the drivers

No!! We must connect the GUI with Erlang
How do you connect a browser to something?
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Connecting the GUI to the rest of the architecture
HTTP Server

HTTP Server

Control

Native GUI (localhost) External Browser

Erlang Beam
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HTTP Protocol

• The server interprets POST requests as commands
• Interchange of JSON objects
• Use comet to implement “asynchronous” communication
• Notify results and events through the comet connection

You can use that protocol in JavaScript using XmlRpcRequest



LambdaStream

HTTP Protocol
Examples

Connecting to the server
POST http:/localhost/1.0/connect

{"id": "7045697"}

No response ...
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HTTP Protocol
Examples

Starting a video playback
POST http:/localhost/1.0/rpc

{"id": "7045697", "cmd": "play",
"arg": {"url": "file:///erlang-the-movie.avi"}}

Server Response
{"code":"ok,"ref":"92384"}
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HTTP Protocol
Examples

Connecting to the server
POST http:/localhost/1.0/connect

{"id": "7045697"}

No response ... til now!

Server Response
{"ref":"92384","result":"ok"}
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Conclusion

• Write C drivers to control small tasks related to the
hardware and the OS

• Provide a platform for GUI developers
• Tie them to an Erlang program controlling all the stuff
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