Introduction Architecture Use cases Summary

Refactoring and Analysis with RefactorErl

Laszlé Lovei

Department of Programing Languages and Compilers
Faculty of Informatics
EGStvos Lorand University

June 25, 2009

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary

Outline

@ Introduction
History
Design goals

@® Architecture
Model
Implementation

® Use cases

Refactoring
Analysis

Laszlé Lovei

Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary History Design goals

History

Original idea: SQL based refactoring (Clean)
Research on Erlang refactoring (Ericsson Hungary)

e Experiments

o MySQL, standard parser and pretty printer
e Mnesia, custom parser, whitespace preservation

Real-world applications for analysis

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary History Design goals

Design goals

@ Store semantic information instead of calculating each time

o Efficient retrieval — graph model
e Incremental analysis

® Provide a platform for source code transformation

e Generic solutions are preferred
o Non-refactoring applications

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary History Design goals

Requirements

Work with large code base

Language coverage

Code preservation

Comment preservation

Layout preservation (indentation)

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

Three-layered graph model

@ Lexical level

e tokens

® preprocessing

e comments, whitespace
® Syntax level

e abstract syntax tree

o files
© Semantic level

e module, function, record, variable nodes
e links to definition and usage

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

-module (my) .
-define(EQOL(X), X ++ "\n").
£(S) -> io:put_chars(?EOL(S)).

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

-module (my) .
-define(EQOL(X), X ++ "\n").
£(S) -> io:put_chars(?EOL(S)).

2] s [>Tzo]] pus-chars| ([7JEoL] ([s]> > [

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

-module (my) .
-define(EQOL(X), X ++ "\n").
£(S) -> io:put_chars(?EOL(S)).

[]
A SR e Qs

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

-module (my) .
-define(EQOL(X), X ++ "\n").
£(S) -> io:put_chars(?EOL(S)).

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

-module (my) .
-define(EQOL(X), X ++ "\n").
£(S) -> io:put_chars(?EOL(S)).

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

-module (my) .
-define(EQOL(X), X ++ "\n").
£(S) -> io:put_chars(?EOL(S)).

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

-module (my) .
-define(EQOL(X), X ++ "\n").
£(S) -> io:put_chars(?EOL(S)).

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

Refactoring workflow

@ Read and analyse source code
o Already finished when refactoring starts
® Check side conditions

e Semantic links make it easy and efficient
e Graph queries simplify graph traversal

© Apply the transformation
e Syntax tree based manipulations
O Save the result

e Unmodified code is preserved
e Generated and moved code is pretty printed

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

Transformation

e Only the syntax tree is manipulated

e Syntactic nodes can be created or deleted
e Subtrees can be copied or moved

e Automatic token handling

e Missing or extra commas and semicolons
o Generation or removal based on the syntax description

e Automatic analysis

e Incremental semantic analysis is triggered by syntactic changes
o Pretty printing is a special kind of analysis

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

Graph storage

e Nodes and edges are stored in Mnesia tables

e Node attributes: token text, variable name, . ..
o Edge labels: subexpression, variable reference, ...

e Graph path: filtered edge label sequence

o Edges are indexed by label
e Cost doesn't grow with code size

e Frequently used queries need only fixed length paths

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

Other details

e Extended syntax description

e Defines the representation
e Source for parser, lexer, and token updater

e Analyser framework

o Extensible, modular structure
e Works on syntactic subtrees (incremental)

e Generic user interface support

e GNU Emacs
o Erllde, XEmacs, Erlang console: on the way

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Model Implementation

Current limitations

e Dynamic constructs
e apply, spawn
o Message passing
e Type annotations
e -type, -spec
e Speed
o Initial analysis
o External modifications

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Refactoring Analysis

Refactoring steps

Rename .
- Expression structure
® variable o .
_ e eliminate variable
e function

) ® merge expressions
e record, record field :
e extract function

e macro .)
dul e inline function
e module .
] e inline macro
e header file

o Function interface
Move definition : :
e generalize function

e macro

) e reorder parameters
e recor

_ e tuple parameters
e function

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Refactoring Analysis

Refactoring data structures

Determine refactoring scope by data flow analysis
e Introduce record

e Upgrade module interface

bump(N, {Name, Cnt}) -> bump (N, R=#inf{cnt=Cnt}) ->
{Name, Cnt+N}. R#tinf{cnt=Cnt+N}.

pid({Name, _}) -> pid (#inf{name=Name}) ->
whereis(Name) . whereis(Name) .

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Refactoring Analysis

Refactoring data structures

Determine refactoring scope by data flow analysis
e Introduce record

e Upgrade module interface

{match, St, L} = {match, [{St, L}]} =
regexp:match(S, RE), re:run(S, RE),
strings:substr(S, St, L) strings:substr(S, St+1, L)

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Refactoring Analysis

Applications of analysis results

e Call graph visualisation
e Header file splitting based on usage
e “Bad smell” detection
stop(S) ->
gen_server:call(S, stop).
stop_all() ->
stop(first),
stop(second) .

con(L) -> con(L, "").

con([1, R) -> R;

con([HIT], R) ->
con(T, R++H).

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary Refactoring Analysis

Clustering

e Code restructuring based on component relations

e Function calls
e Record and macro usage

e Module clustering

e Split a large block of modules to more manageable parts
e Involves splitting of header files

e Function clustering

e Split a large module into smaller parts
e Refactoring: move function

Laszlé Lovei Refactoring and Analysis with RefactorErl

Introduction Architecture Use cases Summary

Summary

e RefactorErl: source code analyser and transformer

e Helps in development and maintenance

http://plc.inf.elte.hu/erlang

Laszlé Lovei Refactoring and Analysis with RefactorErl

	Introduction
	History
	Design goals

	Architecture
	Model
	Implementation

	Use cases
	Refactoring
	Analysis

	Summary

