CSLab and all that ...

Bjarne Däcker Tekn lic, Tekn dr h c
• Ericsson employee 1966 – 2002
• Manager CSLab 1984 – 2002
• Now retired
CSLab

Computer Science Laboratory at Ericsson

• 1980 informally started
• 1984 formally established
• 1997 – 2001 SARC (Software Architecture Research Centre)
 spun off from CSLab
• 2002 closed down

Thus 10 – 15 people during 20 years → 200 – 300 manyears !!!
Basic Research
• Discover or create new knowledge for mankind

Applied Research
• Apply new knowledge to problems or applications in the real world
The Process of Applied Research

- New knowledge
- Problem or opportunity
- Experiment
- Evaluation
- Productification and exploitation
- Idea dropped

Can be problem driven or technology driven

Terrible lesson learnt only too late: Marketing is all important. People might not believe (in) something they see working but might well be prepared to trust something that they have only heard of.
CSLab charter

• Develop software technology for future telecom systems and support systems

• In the near term contribute to the introduction of new technology in existing systems

April 19, 1984
Mike Williams’ credo

• Find the right methods – design by prototyping

• Make mistakes in a small scale – not in a production project

• It is not good enough to have ideas – you must also be able to implement them yourself to know that they work
CSLab’s lucky timing

• The Japanese Fifth Generation project

• The European Esprit project

• The British Alvey project
Some other projects at CSLab

• Unix
• TCP/IP
• Transputer
• RISC Architectures
• Super conductors (!)
• Smalltalk computer
• Prolog, Lisp
• Work stations
• Graphics user interface
• Expert Systems
• IP access over passive cable networks
Laboratory environment for experiments with telecomms programming

- VAX 11 running Unix
- Small private exchange
 - Telephones
Techniques tried

- Imperative Programming Languages
 - Concurrent Euclid
 - Ada
- Declarative Programming Languages
 - PFL (Parallel Functional Language)
 - LPL (Logic Programming Language)
- Rules Based Systems
 - OPS4
- Object Oriented Languages
 - Frames
 - CLU
Conclusions 1

• Telecoms can apparently be programmed in any language
• A small language like Concurrent Euclid managed very well
• The process concept is very useful
• Concepts like buffers or rendez-vous are very awkward
• Functional languages are powerful but need some database
• Logic languages and rule based systems give a nice declarative approach but need modularisation
• Object oriented languages handle modularity but need concurrency

January 1984
Conclusions 2

• Dealing with concurrency in imperative languages by means of process abstraction and the methods for process interwork are now established technologies.
• Adding concurrency to CLU could probably be done in a fairly conventional manner...
• Future systems will probably be built up using many of the techniques used in these experiments, for example expert systems for maintenance functions, logic programming for programming signal system interfaces and the underlying OS might be programmed in an advanced imperative language.
A typical Pascal program (?)

What more is required when used for designing large real-time control systems?
A typical Pascal program (?

- **A module** concept for structuring a large program system being designed by many people
- **A process** concept to describe concurrent activities
- A process communication concept
- Means to communicate with hardware etc. etc.
Some systems programming languages

- **Pascal**: 1968
- **Modula**: 1976
- **Modula-2**: 1978
- **Chill**: 1980
- **Ada**: 1980
Modula and Modula-2

Designed by Nikolaus Wirth

A module concept module

A process concept process

Process communication by using shared variables in interface modules
Ada

Designed by a committee under Jean Ichbiah ordered by the US Dept of Defense

A module concept **package**

A process concept **task**

Process communication by *rendez-vous*, i.e. one task calls a procedure in another task with synchronization
Chill

Designed by a committee working under C.C.I.T.T.

A module concept module

A process concept process

Three methods for process communication

• regions like Modula’s interface modules

• buffers like mailboxes where processes can deposit and retrieve messages

• signals which are messages sent directly from one process to another

When there are several messages waiting it is undefined which one that will be received
EriPascal

Designed at Ericsson intended to be equivalent to a subset of Chill

A module concept module

A process concept process corresponding to a normal Pascal program

Process communication by signals and selective receive like in Erlang (except no pattern matching)
Some further observations

The process concept is very useful to model concurrency but is too heavyweight in most languages to implement massive concurrency.

Fault handling on a per process basis and the ability to connect (link) processes so that one process can supervise another. Default being that if one process crashes all linked processes also crash but with the possibility to override this default and "trap" the exit message. This idea comes from the way old relay equipment used to work (C-wire).

Ability to replace code in a running system. This not only reduces down time, but also facilitates debugging and correction of errors.
Some good old-fashioned relay set technology
Signal-state or state-signal?

Cooperating automatons are popular in telecomms.

The figure shows the programming model of a PLEX program for AXE with entry points for different signals.

The programmer has to administer the program flow himself.

Signals arriving when not expected require special action.
Language manual

• EriPascal – An internal Ericsson report 1984

• Erlang – A book printed by Prentice Hall 1993
Approved basic technology

- Own technology development and maintenance
- External suppliers
- Application development
- Application development
- Application development
- System platform
- Application Oriented research
- External users
- Own applied research
- Academic research
Some proposed strategies

- Throw it over the wall and see what happens
- Move the people
Technology transfer

- Project management
- Product management
- Compiler
- Mnesia
- SASL
- Etc...
- Release management
Technology transfer

- Project management
- Product management

Phase 2

- Compiler
 - CSLab + OTP

- Mnesia
 - CSLab + OTP

- SASL
 - CSLab + OTP

- Etc ...
 - CSLab + OTP

- Release management
 - OTP
Technology transfer

Phase 3 ...

Project management
Product management

OTP

Compiler

Mnesia

SASL

Etc ...

OTP

Release management

OTP

CSLabs successively phased out

OTP + CSLab

OTP + CSLab

OTP + CSLab

OTP + CSLab
Early Erlang history

<table>
<thead>
<tr>
<th>Year</th>
<th>Internal usage</th>
<th>External usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984-86</td>
<td>Technology evaluations</td>
<td>-</td>
</tr>
<tr>
<td>1987-89</td>
<td>Use in prototypes</td>
<td>-</td>
</tr>
<tr>
<td>1990-92</td>
<td>Use for strategic product development</td>
<td>Academic distribution</td>
</tr>
<tr>
<td>1993-95</td>
<td>Limited use in products</td>
<td>External marketing</td>
</tr>
<tr>
<td>1996</td>
<td>Use for strategic product development</td>
<td>External marketing stopped</td>
</tr>
<tr>
<td>1997</td>
<td>OTP team created</td>
<td>External marketing restarted</td>
</tr>
<tr>
<td>1998</td>
<td>Nine products displayed at CeBit</td>
<td>3,323 evaluation systems delivered</td>
</tr>
<tr>
<td>1998</td>
<td>Erlang banned at ERA for new products</td>
<td>Open source release</td>
</tr>
<tr>
<td>1999...</td>
<td>AXD301 and GPRS win important orders</td>
<td>Growing use for product development</td>
</tr>
</tbody>
</table>

Management intervenes ...
The importance of chance and individuals

• Mike Williams coming from within Ericsson
• Joe Armstrong coming from outside Ericsson
• Bogdan Hausman coming from SICS
• Claes Wikström creating distributed Erlang and Mnesia
• Thomas Lindgren initiating HiPE
• Jane Walerud getting approval for Open Source
• Francesco Cesarini setting up Erlang Training & Consulting
• Kenneth Lundin ensuring a professional quality product
• Mickaël Rémond writing a French book on Erlang
• etc. etc. etc. etc.
Requests per year to www.erlang.org
Erlang/OTP International User Conferences are held every year in Älvsjö.

This photo shows the audience of the 11th EUC in 2005 with more than 130 participants.
ACM SIGPLAN Erlang Workshops
have been held since 2002 in connection with ICFP
International Conference on Functional Programming

The ACM SIGPLAN workshops were held 2002 in Pittsburgh, 2003 in Uppsala,
2004 in Snowbird, Utah, 2005 in Tallinn, 2006 in Portland, 2007 in Freiburg and
2008 in Victoria, B.C. The photograph shows the audience of the workshop in Tallinn
The next workshop will be on September 5, 2009, in Edinburgh
CSLab after Erlang

• SIP, Megaco and other protocol stuff

• Program verification

• Speech technology

• Collaboration with various Ericsson projects like home communication ...
What happened to them all?

<table>
<thead>
<tr>
<th>Position/Institution</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big boss at Ericsson</td>
<td>Mike Williams</td>
</tr>
<tr>
<td>Prototyping at Ericsson</td>
<td>Joe Armstrong</td>
</tr>
<tr>
<td>Swedish Defense Institute</td>
<td>Robert Virding</td>
</tr>
<tr>
<td>VINNOVA</td>
<td>Bogdan Hausman</td>
</tr>
<tr>
<td></td>
<td>Nabil Elshiewy</td>
</tr>
<tr>
<td>Erlang/OTP Team at Ericsson</td>
<td>Lars Thorsén</td>
</tr>
<tr>
<td></td>
<td>Håkan Mattsson</td>
</tr>
<tr>
<td>Tail-f</td>
<td>Håkan Millroth</td>
</tr>
<tr>
<td></td>
<td>Claes Wikström better known as Klacke</td>
</tr>
<tr>
<td></td>
<td>Per Hedeland</td>
</tr>
<tr>
<td></td>
<td>Sebastian Strollo</td>
</tr>
<tr>
<td></td>
<td>Johan Bevemyr</td>
</tr>
<tr>
<td>Kreditor</td>
<td>Torbjörn Törnkvist</td>
</tr>
<tr>
<td></td>
<td>Magnus Fröberg</td>
</tr>
<tr>
<td>Corelatus</td>
<td>Matthias Läng</td>
</tr>
<tr>
<td>Professor of Computer Science, Göteborg</td>
<td>Thomas Arts</td>
</tr>
<tr>
<td>Professor of Computer Architecture, Uppsala</td>
<td>Erik Hagersten</td>
</tr>
<tr>
<td>Board member of Erlang Training & Consulting</td>
<td>Bjarne Däcker</td>
</tr>
</tbody>
</table>

More info at the nostalgic homepage www.cs-lab.org
Conclusions

- It’s a rôle game. All parts are required
- Keep them separate but in close cooperation
- Mike Williams’ credo #2 – If you don’t experiment, your project will be an experiment