
Haskell and Erlang
Growing up together
Simon Peyton Jones, Microsoft Research

Haskell and Erlang

 Born late 1980s

 Childhood 1990s

 Growing fast 2000s

Haskell and Erlang

 Born late 1980s

 Childhood 1990s

 Growing fast 2000s

Haskell Erlang

Context Academic Industrial

Designers Committee Joe and Robert

War-cry Laziness Concurrency

Original substrate Lambda calculus Logic programming

Types Yes!!!!!! No!!!!!!

Haskell and Erlang

 Born late 1980s

 Childhood 1990s

 Growing fast 2000s

Still thriving

Most new programming languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The quick death

G
e
e
ks

Pr
ac

ti
ti

on
e
rs

Successful research languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
e
e
ks

Pr
ac

ti
ti

on
e
rs

C++, Java, Perl, Ruby

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The regrettable
absence of death

G
e
e
ks

Pr
ac

ti
ti

on
e
rs Threshold of immortality

Haskell

1,000,000

1

100

10,000

The second life?

G
e
e
ks

Pr
ac

ti
ti

on
e
rs

“Learning Haskell is a great way of
training yourself to think functionally

so you are ready to take full
advantage of C# 3.0 when it comes

out”
(blog Apr 2007)

“I'm already looking at
coding problems and my

mental perspective is now
shifting back and forth
between purely OO and

more FP styled solutions”
(blog Mar 2007)

1990 1995 2000 2005 2010

Mobilising the community

 Package = unit of distribution

 Cabal: simple tool to install package
and all its dependencies

 Hackage: central
repository of
packages, with
open upload policy

bash$ cabal install pressburger

Result: staggering

Package uploads
Running at 300/month

Over 650 packages

Package downloads

heading for 1 million
downloads

The packages on Hackage

The packages on Hackage

Origins

The late 1979s, early 1980s

Lazy functional
programming

(Friedman, Wise,
Henderson, Morris, Turner)

SK combinators,
graph reduction

(Turner)

Backus 1978
Can programming be

liberated from the von
Neumann style?

Pure functional programming:
recursion, pattern matching,

comprehensions etc etc
(ML, SASL, KRC, Hope, Id)

Dataflow architectures
(Dennis, Arvind et al)

John Backus Dec 1924 – Mar 2007

Lisp machines
(Symbolics, LMI)

Lambda the Ultimate
(Steele, Sussman)

The 1980s

Dataflow architectures
(Arvind et al)

Lazy functional
programming

(Friedman, Wise,
Henderson, Morris, Turner)

SK combinators,
graph reduction

(Turner)

Backus
Can programming be

liberated from the von
Neumann style?

Functional programming:
recursion, pattern matching,

comprehensions etc etc
(ML, SASL, KRC, Hope, Id)

FP is respectable
(as well as cool)

Go forth and design
new languages

and new computers
and rule the world

Result

Chaos
Many, many bright young things

Many conferences
(birth of FPCA, LFP)

Many languages
(Miranda, LML, Orwell, Ponder, Alfl, Clean)

Many compilers

Many architectures
(mostly doomed)

Crystalisation

FPCA, Sept 1987: initial meeting.
A dozen lazy functional programmers, wanting to agree

on a common language.

 Suitable for teaching, research, and application

 Formally-described syntax and semantics

 Freely available

 Embody the apparent consensus of ideas

 Reduce unnecessary diversity

Absolutely no clue how much work we were taking on

Led to...a succession of face-to-face meetings

WG2.8 June 1992

WG2.8 June 1992
Phil John

WG2.8 June 1992

Dorothy

Sarah

Sarah (b. 1993)

Haskell the cat (b. 2002)

Haskell Timeline
Sept 87: kick off

Apr 90: Haskell 1.0

May 92: Haskell 1.2 (SIGPLAN Notices) (164pp)
(thank you Richard Wexelblat)

Aug 91: Haskell 1.1 (153pp)

May 96: Haskell 1.3. Monadic I/O,
separate library report

Apr 97: Haskell 1.4 (213pp)

Feb 99: Haskell 98 (240pp)

Dec 02: Haskell 98 revised (260pp)

2003-2007 Growth spurt

Erlang timeline

A taste of Haskell,
flavoured with types

What is Haskell?

Example: lookup in a binary tree
lookup :: Tree key val -> key -> val

 What if lookup fails?
lookup :: Tree key val -> key -> Maybe val

data Maybe a = Nothing | Just a

 Failure is represented by data (Nothing), not
control (exception)

eg suppose t :: Tree String Int
 lookup t “Fred” = Nothing

 lookup t “Bill” = Just 103

What is Haskell?
lookup :: Tree key val -> key -> Maybe val

 Can this work for ANY type key?

 No: only those that support ordering
eg no lookup in Tree (Int->Int) Bool

lookup :: Ord key => Tree key val -> key -> Maybe val

What is Haskell?
lookup :: Tree key val -> key -> Maybe val

 Can this work for ANY type key?

 No: only those that support ordering
eg no lookup in Tree (Int->Int) Bool

 Types tell you what the function does not
do, as well as what it does do

lookup :: Ord key => Tree key val -> key -> Maybe val

reverse:: [a] -> [a]

reverse (map f xs) = map f (reverse xs)

implies

Implementing lookup

lookup :: Ord key => Tree key val -> key -> Maybe val

data Tree key val

= Empty

| Node key val (Tree key val) (Tree key val)

Implementing lookup

 Pattern matching just like Erlang

 Compiler checks exhaustiveness

 Guards distinguish sub-cases

lookup :: Ord key => Tree key val -> key -> Maybe val

data Tree key val

= Empty

| Node key val (Tree key val) (Tree key val)

lookup Empty x = Nothing

lookup (Node k v t1 t2) x

| x < k = lookup t1 x

| x == k = Just v

| otherwise = lookup t2 x

Haskell is typed, Erlang is not

Conventional wisdom (types are like going
to the gym 2 hrs/day)

 Yes, and that is super-important

 But you can do much of that using other
techniques: remorseless testing, code
review, agile sumo wrestling etc etc

 And yes, types do get in the way
sometimes (eg generic programming)

static type systems
detect errors early

Why types?

 Types are Haskell’s (machine-checked)
design language
– they say a lot, but not too much

– programmers start by writing down lots of
type signatures and data type declarations

 Types dramatically ease maintenance
– Change the data type declaration, recompile,

fix errors. Forces the change to be accounted
for everywhere

Why types?

 Types ease testing
– Quickcheck was born in Haskell

 Test case generation based on the types:

prop_insert :: Tree Int Char -> Int -> Char -> Bool

prop_insert t x v = case lookup (insert t x v) x of

Just w -> v==w

Nothing -> False

ghci> quickCheck prop_insert

OK! Passed 100 tests!

ghci>

Why types?

 Types are fun. To avoid the “types getting in the
way” problem, you need a more expressive type
system

 Haskell has turned out to be a laboratory for new
type-system ideas.

– Type classes

– Existentials

– Higher-kinded polymorphism

– Higher rank types

– Generalised algebraic data types

– Associated types

– Type functions

Concurrency

Common ground

 Embrace concurrency: millions of
lightweight threads

 Tame concurrency by

Limiting side effects

Java or C
Unrestricted

effects
Computational

fabric is
imperative

Haskell
No side
effects

Erlang
The only side effects

are sending and
receiving messages

Computational fabric
is functional

Common ground

 Embrace concurrency: millions of
lightweight threads

 Tame concurrency by

Limiting side effects

Java or C
Unrestricted

effects
Computational

fabric is
imperative

Haskell
No side
effects

Erlang
The only side effects

are sending and
receiving messages

Computational fabric
is functional

“Concurrency” is not one thing

 Performance: use many processors
to make programs run faster
– Issues: granularity, locality

 Programmability: use threads to express the
natural concurrency of the application (eg one
thread per phone call)
– Issues: non-determinism

 Distribution: different parts of the program must
run in different places
– Issues: latency, failure, trust, protocols

 Robustness: a thread is a plausible unit of kill-
and-recover

Concurrency in Haskell

Haskell has at least three concurrency
paradigms

 Semi-implicit parallelism (par/seq)

 Explicit threads, and STM

 Data parallelism

Performance: plan A

Well, maybe....

e1 + e2

let x = e1 in e2

Evaluating absolutely everything in parallel

• is safe

• but gives WAY too much parallelism

• and WAY too fine grain

Lots of doomed efforts in 1980s to solve this

Just evaluate e1 and e2 in parallel

Performance: plan B

 Programmer assistance
– (x `par` x) tells RTS that x will be needed

later

– (x `seq` y) evaluates x then y

 Result is still deterministic, which is
a Huge Win for parallel programming

f :: Int -> Int

f x = a `par` b `seq` a + b

where

a = f (x-1)

b = f (x-2)

Happy customers

 Very modest investment

 Somewhat modest
speedup

 Getting really good
performance is still an
art form

“I originally planned to spend a few hours
working on parallelization. I started playing
around with it for fun while I was waking up
with coffee one morning. Half an hour and
53 characters later I had around a 40%

speedup on two cores. In this, Haskell kind
of ruined the project for me. It was too
easy to introduce parallelization into the

program and have it just work. “
18 June 2009

http://blog.finiteimprobability.com/2009/06/18/experience-writing-
a-ray-tracer-in-haskell/

Ray tracer
527 lines of code

30 hrs work

Data parallelism

 `par` is too undisciplined
– pointers everywhere, no locality worth a damn

– granularity varies massively, even for a single `par`

 More promising: data parallelism

– Locality: lay out the array across the machine

– Granularity: divide array into chunks, one per processor,
run a sequential (map f chunk) on each processor

– Results still deterministic

– But programming model is much more restricted

pmap f [x1, ... , x1000000]

Data parallelism

 `par` is too undisciplined
– pointers everywhere, no locality worth a damn

– granularity varies massively, even for a single `par`

 More promising: data parallelism

– Locality: lay out the array across the machine

– Granularity: divide array into chunks, one per processor,
run a sequential (map f chunk) on each processor

– Results still deterministic

– But programming model is much more restricted

pmap f [x1, ... , x1000000]

“Concurrency” is not one thing

 Performance: use many processors
to make programs run faster
– Issues: granularity, locality

 Programmability: use threads to
express the natural concurrency of
the application (eg one thread per
phone call)
– Issues: non-determinism

 Distribution: different parts of the program must run in different places
– Issues: latency, failure, trust, protocols

 Robustness: a thread is a plausible unit of kill-and-recover

I/O in Haskell

 How do you do I/O in a language that has
no side effects?

 Good for making
computer hot,
but not much else

 Result: prolonged
embarrassment.
Stream-based I/O,
continuation I/O...
but NO DEALS WIH

THE DEVIL

Salvation through monads

A value of type (IO t) is an “action”

that, when performed, may do some
input/output before delivering a result

of type t.

getChar :: IO Char
putChar :: Char -> IO ()

main :: IO ()

main = putChar „x‟

 The main program is an action of type IO ()

Sequencing I/O operations

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

echo :: IO Char

echo = getChar >>= (\a ->

putChar a >>= (\() ->

return a)))

getChar >>= \a ->

putchar a >>= \()->

return a

do {

a <- getChar;

putchar a;

return a

}

==

The do-notation

 Syntactic sugar only
 Easy translation into (>>=), return
 Deliberately imperative “look and feel”

Control structures

Values of type (IO t) are first class

So we can define our own “control structures”

forever :: IO () -> IO ()

forever a = do { a; forever a }

repeatN :: Int -> IO () -> IO ()

repeatN 0 a = return ()

repeatN n a = do { a; repeatN (n-1) a }

main = repeatN 10 (putChar „x‟)

Concurrency

forkIO :: IO a -> IO ThreadId

 (forkIO m) spawns a new thread
that runs m concurrently, and
immediately returns its ThreadId

 The big question: how do threads
coordinate?

main = do { forkIO (print “Hello”);

print “Goodbye” }

HeGoodlldbyoe

STM

main :: IO ()

main = do { r <- newRef 0

; forkIO (addR r 1)

; addR r 10

; v <- readRef r

; print v}

addR :: Ref Int -> Int -> IO ()

addR r n = do { v <- readRef r

; writeRef r (v+n)}

newRef :: a -> IO (Ref a)

readRef :: Ref a -> IO a

writeRef :: Ref a -> a -> IO ()

 Bad interleaving => prints 1 (not 10 or 11)

STM

main :: IO ()

main = do { r <- newTVar 0

; forkIO (atomic (addR r 1))

; atomic (addR r 10)

; v <- readTVar r

; print v}

addR :: Ref Int -> Int -> IO ()

addR r n = do { v <- readTVar r

; writeTVar r (v+n)}

atomic :: IO a -> IO a

 (atomic m) runs m atomically wrt all other
threads

STM in practice

 Want to allow the implementation the opportunity
of using optimistic concurrency
– run the transaction in the expectation of no conflict,

keeping effects invisible to other threads

– at the end, check for conflict
• no conflict: commit the effects

• conflict: undo private effects, and re-rerun from the start

 Consequences
– Track every read and write to mutable state (easy in

Haskell, not so easy in C#)

– Do not allow I/O inside a transaction

– Hence: classify effects into:
• Reads and writes of tracked mutable variables

• Arbitrary I/O

STM

main :: IO ()

main = do { r <- atomic (newTVar 0)

; forkIO (atomic (addR r 1))

; atomic (addR r 10)

; v <- atomic(readTVar r)

; print v}

addR :: Ref Int -> Int -> STM ()

addR r n = do { v <- readTVar r

; writeTVar r (v+n)}

newRef :: a -> STM (TVar a)

readRef :: TVar a -> STM a

writeRef :: TVar a -> a -> STM ()

atomic :: STM a -> IO a

 Type system guarantees
– no I/O inside transaction

– no mutation of TVars outside transaction

More STM

 Studying STM led to an elegant,
compositional mechanism for
– blocking

– choice

 Now being adopted by the
mainstream

retry :: STM a

orElse :: STM a -> STM a -> STM a

Actor concurrency

 Using STM (or MVars) it is very easy
to build buffered channels

 ...which in turn lets you write
programs Erlang-style if you want

 ...but with new forms of composition

newChan :: Chan a

send :: Chan a -> a -> STM ()

receive :: Chan a -> STM a

receive c1 `orElse` receive c2

What I envy about Erlang

 Share-nothing threads are part of
Erlang’s core design

 That is a limitation, but it has many
useful payoffs:
– Easy distribution across multicore

– Per-thread garbage collection

– Excellent failure model

The future

1. Scheme, Erlang, Haskell, Ocaml, F#, Scala are all
demonstrably valuable to Hard Nosed
Developers, in interestingly different ways.

– Functional programming is still a niche... but it is fast
becoming a shelf.

– Diversity is good

2. We may not rule the world, but the world is
increasingly listening. That is a privilege and a
responsibility.

3. Concurrency is complicated; no free lunch

4. The highly-concurrent languages of the future
will be functional. (Although they many not be
called functional.)

Backup
slides

What have we achieved?

 The ability to mix imperative and purely-
functional programming, without ruining
either

 All laws of pure functional programming
remain unconditionally true, even of actions

e.g.

let x=e in ...x....x...

=
....e....e.....

Type classes

class Eq a where

(==) :: a -> a -> Bool

instance Eq Int where

i1 == i2 = eqInt i1 i2

instance (Eq a) => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = (x == y) && (xs == ys)

member :: Eq a => a -> [a] -> Bool

member x [] = False

member x (y:ys) | x==y = True

| otherwise = member x ys

Type classes

Initially, just a neat
way to get systematic

overloading of (==),
read, show.

data Eq a = MkEq (a->a->Bool)

eq (MkEq e) = e

dEqInt :: Eq Int

dEqInt = MkEq eqInt

dEqList :: Eq a -> Eq [a]

dEqList (MkEq e) = MkEq el

where el [] [] = True

el (x:xs) (y:ys) = x `e` y && xs `el` ys

member :: Eq a -> a -> [a] -> Bool

member d x [] = False

member d x (y:ys) | eq d x y = True

| otherwise = member d x ys

Implementing type classes

Class witnessed
by a “dictionary”

of methodsInstance
declarations create

dictionaries

Overloaded
functions

take extra
dictionary

parameter(s)

Type classes over time

 Type classes are the most unusual
feature of Haskell’s type system

Incomprehension

Wild enthusiasm

1987 1989 1993 1997

Implementation begins

Despair Hack,
hack,
hack

Hey, what’s
the big
deal?

Type classes have proved
extraordinarily convenient in practice

 Equality, ordering, serialisation

 Numerical operations. Even numeric
constants are overloaded

 Monadic operations

 And on and on....time-varying
values, pretty-printing, collections,
reflection, generic programming,
marshalling, monad transformers....

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

In Haskell,
my 17 can
definitely
be your 23

Note the
higher-kinded

type variable, m

Quickcheck

ghci> quickCheck propRev

OK: passed 100 tests

ghci> quickCheck propRevApp

OK: passed 100 tests

Quickcheck (which is just a Haskell 98 library)

 Works out how many arguments

 Generates suitable test data

 Runs tests

propRev :: [Int] -> Bool

propRev xs = reverse (reverse xs) == xs

propRevApp :: [Int] -> [Int] -> Bool

propRevApp xs ys = reverse (xs++ys) ==

reverse ys ++ reverse xs

Quickcheck
quickCheck :: Test a => a -> IO ()

class Test a where

test :: a -> Rand -> Bool

class Arby a where

arby :: Rand -> a

instance (Arby a, Test b) => Test (a->b) where

test f r = test (f (arby r1)) r2

where (r1,r2) = split r

instance Test Bool where

test b r = b

Type-class fertility

Wadler/
Blott
type

classes
(1989)

Multi-
parameter

type classes
(1991) Functional

dependencies
(2000)

Higher kinded
type variables

(1995)

Associated
types (2005)

Implicit
parameters (2000)

Generic
programming

Testing

Extensible
records (1996) Computation

at the type
level

“newtype
deriving”

Derivable
type classes

Overlapping
instances

Variations

Applications

Type classes summary

 A much more far-reaching idea than we
first realised: the automatic, type-driven
generation of executable “evidence”

 Many interesting generalisations, still
being explored

 Variants adopted in Isabel, Clean,
Mercury, Hal, Escher

 Danger of Heat Death

 Long term impact yet to become clear

Process
and

community

A committee language

 No Supreme Leader

 A powerfully motivated design group who
trusted each other

 The Editor and the Syntax Tzar

 Committee explicitly disbanded 1999

Language complexity

 “Languages are too complex,
fraught with dispensable features
and facilities.” (Wirth, HOPL 2007)

 Much superficial complexity (e.g.
redundant syntactic forms),

 No formal semantics

 Nevertheless, underpinned by
Deeply Held Principles

“Deeply held principles”

 System F is GHC’s intermediate language

data Expr

= Var Var

| Lit Literal

| App Expr Expr

| Lam Var Expr

| Let Bind Expr

| Case Expr Var Type [(AltCon, [Var], Expr)]

| Cast Expr Coercion

| Note Note Expr

| Type Type

type Coercion = Type

data Bind = NonRec Var Expr | Rec [(Var,Expr)]

data AltCon = DEFAULT | LitAlt Lit | DataAlt DataCon

(Well, something very like System F.)

Sanity check on wilder excesses

The Haskell
Gorilla

System FC

Rest of GHC

Haskell users

 A smallish,
tolerant,
rather pointy-headed, and
extremely friendly

user-base makes Haskell nimble.
Haskell has evolved rapidly and
continues to do so.

 Haskell users react to new features
like hyenas react to red meat

Lesson: avoid success at all costs

The price of usefulness

 Libraries increasingly important:
– 1996: Separate libraries Report

– 2001: Hierarchical library naming structure, increasingly
populated

– 2006: Cabal and Hackage: packaging and distribution
infrastructure

 Foreign-function interface increasingly important
– 1993 onwards: a variety of experiments

– 2001: successful effort to standardise a FFI across
implementations

 Lightweight concurrency, asynchronous
exceptions, bound threads, transactional memory,
data parallelism...

Any language large enough to be
useful becomes dauntingly complex

Conclusion

 Haskell does not meet Bjarne’s
criterion (be good enough on all axes)

 Instead, like Self, it aspires to take
a few beautiful ideas (esp: purity and
polymorphism), pursue them single-
mindedly, and see how far they can
take us.

 In the end, we want to infect your
brain, not your hard drive

Luck

 Technical excellence helps, but is neither
necessary nor sufficient for a language
to succeed

 Luck, on the other hand, is definitely
necessary

 We were certainly lucky: the conditions
that led to Haskell are hard to
reproduce (witness Haskell’)

Fun

 Haskell is rich enough to be useful

 But above all, Haskell is a language in which
people play
– Programming as an art form

– Embedded domain-specific languages

– Type system hacks

 Play leads to new discoveries

Encapsulating it all

runST :: (forall s. ST s a) -> a

Stateful
computation Pure result

data ST s a -- Abstract

newRef :: a -> ST s (STRef s a)

read :: STRef s a -> ST s a

write :: STRef s a -> a -> ST s ()

sort :: Ord a => [a] -> [a]

sort xs = runST (do { ..in-place sort.. })

Encapsulating it all

runST :: (forall s. ST s a) -> a

Higher rank type

MonadsSecurity of
encapsulation
depends on

parametricity

Parametricity depends on there
being few polymorphic functions

(e.g.. f:: a->a means f is the
identity function or bottom)

And that depends on type classes
to make non-parametric

operations explicit
(e.g. f :: Ord a => a -> a)

And it also depends
on purity (no side

effects)

The Haskell committee

Arvind
Lennart Augustsson
Dave Barton
Brian Boutel
Warren Burton
Jon Fairbairn
Joseph Fasel
Andy Gordon
Maria Guzman
Kevin Hammond
Ralf Hinze
Paul Hudak [editor]
John Hughes [editor]

Thomas Johnsson
Mark Jones
Dick Kieburtz
John Launchbury
Erik Meijer
Rishiyur Nikhil
John Peterson
Simon Peyton Jones [editor]
Mike Reeve
Alastair Reid
Colin Runciman
Philip Wadler [editor]
David Wise
Jonathan Young

Syntax

Syntax

Syntax is not important

Parsing is the easy bit of a
compiler

Syntax

Syntax is not important

Syntax is the user interface of a
language

Parsing is the easy bit of a compiler

The parser is often the trickiest bit of
a compiler

Good ideas from other languages

List comprehensions

head :: [a] -> a

head (x:xs) = x

[(x,y) | x <- xs, y <- ys, x+y < 10]

Separate type signatures

DIY infix operators

f `map` xs

Optional layout
let x = 3

y = 4

in x+y

let { x = 3; y = 4} in x+y

f True true = true

Upper case constructors

“Declaration style”

Define a function as a series of
independent equations

map f [] = []

map f (x:xs) = f x : map f xs

sign x | x>0 = 1

| x==0 = 0

| x<0 = -1

“Expression style”

Define a function as an expression

map = \f xs -> case xs of

[] -> []

(x:xs) -> map f xs

sign = \x -> if x>0 then 1

else if x==0 then 0

else -1

Fat vs thin
Expression style

• Let

• Lambda

• Case

• If

Declaration style

• Where

• Function arguments on lhs

• Pattern-matching

• Guards

SLPJ’s conclusion
syntactic redundancy is a big win

Tony Hoare’s comment “I fear that Haskell is doomed to succeed”

Example (ICFP02 prog comp)

sp_help item@(Item cur_loc cur_link _) wq vis

| cur_length > limit -- Beyond limit

= sp wq vis

| Just vis_link <- lookupVisited vis cur_loc

= -- Already visited; update the visited

-- map if cur_link is better

if cur_length >= linkLength vis_link then

-- Current link is no better

sp wq vis

else

-- Current link is better

emit vis item ++ sp wq vis'

| otherwise -- Not visited yet

= emit vis item ++ sp wq' vis'

where

vis‟ = ...

wq = ...

Guard

Pattern
guard

Pattern
match

Conditional

Where
clause

What is important or
interesting about

Haskell?

So much for syntax...

What really matters?

Laziness

Type classes

Sexy types

In favour of laziness

Laziness is jolly convenient
sp_help item@(Item cur_loc cur_link _) wq vis

| cur_length > limit -- Beyond limit

= sp wq vis

| Just vis_link <- lookupVisited vis cur_loc

= if cur_length >= linkLength vis_link then

sp wq vis

else

emit vis item ++ sp wq vis'

| otherwise

= emit vis item ++ sp wq' vis'

where

vis‟ = ...

wq‟ = ...

Used in two
cases

Used in one
case

Combinator libraries

Recursive values are jolly useful
type Parser a = String -> (a, String)

exp :: Parser Expr

exp = lit “let” <+> decls <+> lit “in” <+> exp

||| exp <+> aexp

||| ...etc...

This is illegal in ML, because of the value restriction

Can only be made legal by eta expansion.

But that breaks the Parser abstraction,
and is extremely gruesome:

exp x = (lit “let” <+> decls <+> lit “in” <+> exp

||| exp <+> aexp

||| ...etc...) x

Sexy types

Sexy types

Haskell has become a laboratory and
playground for advanced type hackery

 Polymorphic recursion

 Higher kinded type variables
data T k a = T a (k (T k a))

 Polymorphic functions as constructor arguments
data T = MkT (forall a. [a] -> [a])

 Polymorphic functions as arbitrary function
arguments (higher ranked types)
f :: (forall a. [a]->[a]) -> ...

 Existential types
data T = exists a. Show a => MkT a

Is sexy good? Yes!

 Well typed programs don’t go wrong
 Less mundanely (but more allusively) sexy

types let you think higher thoughts and
still stay [almost] sane:
– deeply higher-order functions
– functors
– folds and unfolds
– monads and monad transformers
– arrows (now finding application in real-time

reactive programming)
– short-cut deforestation
– bootstrapped data structures

How sexy?

 Damas-Milner is on a cusp:

– Can infer most-general types without any type
annotations at all

– But virtually any extension destroys this property

 Adding type quite modest type annotations lets us
go a LOT further (as we have already seen)
without losing inference for most of the program.

 Still missing from even the sexiest Haskell impls

– l at the type level

– Subtyping

– Impredicativity

Destination = Fw
<:

Open question

What is a good design for user-
level type annotation that exposes

the power of Fw or Fw
<:, but co-

exists with type inference?

C.f. Didier & Didier’s MLF work

Modules

Power

D
if

fi
cu

lt
y

Haskell 98

ML functors

Haskell + sexy types

Modules

Power

Haskell 98

ML functors

Haskell + sexy types

Porsche
High power, but poor power/cost ratio

• Separate module language
• First class modules problematic
• Big step in language & compiler complexity
• Full power seldom needed

Ford Cortina with alloy wheels
Medium power, with good power/cost

• Module parameterisation too weak
• No language support for module signatures

Modules

 Haskell has many features that overlap with what
ML-style modules offer:
– type classes

– first class universals and existentials

 Does Haskell need functors anyway? No: one
seldom needs to instantiate the same functor at
different arguments

 But Haskell lacks a way to distribute “open”
libraries, where the client provides some base
modules; need module signatures and type-safe
linking (e.g. PLT,Knit?). p not l!

 Wanted: a design with better power, but good
power/weight.

Monads

 Exceptions
type Exn a = Either String a

fail :: String -> Exn a

 Unique supply
type Uniq a = Int -> (a, Int)

new :: Uniq Int

 Parsers
type Parser a = String -> [(a,String)]

alt :: Parser a -> Parser a -> Parser a

Monad combinators (e.g. sequence, fold,
etc), and do-notation, work over all monads

Example: a type checker

tcExpr :: Expr -> Tc Type

tcExpr (App fun arg)

= do { fun_ty <- tcExpr fun

; arg_ty <- tcExpr arg

; res_ty <- newTyVar

; unify fun_ty (arg_ty --> res_ty)

; return res_ty }

Tc monad hides all the plumbing:

 Exceptions and failure

 Current substitution (unification)

 Type environment

 Current source location

 Manufacturing fresh type variables

Robust to changes in
plumbing

The IO monad

The IO monad allows controlled introduction of
other effect-ful language features (not just I/O)

 State
newRef :: IO (IORef a)

read :: IORef s a -> IO a

write :: IORef s a -> a -> IO ()

 Concurrency
fork :: IO a -> IO ThreadId

newMVar :: IO (MVar a)

takeMVar :: MVar a -> IO a

putMVar :: MVar a -> a -> IO ()

Performing I/O

 A program is a single I/O action

 Running the program performs the
action

 The type tells the effects:
– reverse :: String -> String

– searchWeb :: String -> IO [String]

main :: IO a

What we have not achieved

 Imperative programming is no easier than it
always was

e.g. do { ...; x <- f 1; y <- f 2; ...}

?=?

do { ...; y <- f 2; x <- f 1; ...}

 ...but there’s less of it!

 ...and actions are first-class values

Our biggest mistake

Using the scary term
“monad”

rather than

“warm fuzzy thing”

Open challenge 1

Open problem: the IO monad has become Haskell’s sin-
bin. (Whenever we don’t understand something, we
toss it in the IO monad.)

Festering sore:

unsafePerformIO :: IO a -> a

Dangerous, indeed type-unsafe, but occasionally
indispensable.

Wanted: finer-grain effect partitioning

e.g. IO {read x, write y} Int

Open challenge 2

Which would you prefer?

do { a <- f x;

b <- g y;

h a b }

h (f x) (g y)

In a commutative monad, it does not matter whether
we do (f x) first or (g y).

Commutative monads are very common. (Environment,
unique supply, random number generation.) For these,
monads over-sequentialise.

Wanted: theory and notation for some cool compromise.

Monad summary

 Monads are a beautiful example of a
theory-into-practice (more the thought
pattern than actual theorems)

 Hidden effects are like hire-purchase: pay
nothing now, but it catches up with you in
the end

 Enforced purity is like paying up front:
painful on Day 1, but usually worth it

 But we made one big mistake...

Extensiblity

 Like OOP, one can add new data
types “later”. E.g. QuickCheck works
for your new data types (provided
you make them instances of Arby)

 ...but also not like OOP

Type-based dispatch

 A bit like OOP, except that method suite
passed separately?

double :: Num a => a -> a

double x = x+x

 No: type classes implement type-based
dispatch, not value-based dispatch

class Num a where

(+) :: a -> a -> a

negate :: a -> a

fromInteger :: Integer -> a

...

Type-based dispatch

double :: Num a => a -> a
double x = 2*x

means
double :: Num a -> a -> a
double d x = mul d (fromInteger d 2) x

The overloaded value is returned by
fromInteger, not passed to it. It is the
dictionary (and type) that are passed as
argument to fromInteger

class Num a where

(+) :: a -> a -> a

negate :: a -> a

fromInteger :: Integer -> a

...

Type-based dispatch
So the links to intensional polymorphism
are much closer than the links to OOP.
The dictionary is like a proxy for the
(interesting aspects of) the type argument
of a polymorphic function.

f :: forall a. a -> Int

f t (x::t) = ...typecase t...

f :: forall a. C a => a -> Int

f x = ...(call method of C)...

Intensional
polymorphism

Haskell

C.f. Crary et al lR (ICFP98), Baars et al (ICFP02)

Cool generalisations

 Multi-parameter type classes

 Higher-kinded type variables (a.k.a.
constructor classes)

 Overlapping instances

 Functional dependencies (Jones
ESOP’00)

 Type classes as logic programs
(Neubauer et al POPL’02)

Qualified types

 Type classes are an example of qualified
types [Jones thesis]. Main features
– types of form a.Q =>
– qualifiers Q are witnessed by run-time

evidence
 Known examples

– type classes (evidence = tuple of methods)
– implicit parameters (evidence = value of

implicit param)
– extensible records (evidence = offset of field

in record)
 Another unifying idea: Constraint Handling

Rules (Stucky/Sulzmann ICFP’02)

