
Erlang and Thrift for Web
Development

Todd Lipcon

(@tlipcon)

Cloudera

June 25, 2009

Introduction

Erlang vs PHP

Thrift

A Case Study

About Me
Who’s this dude who looks like he’s 14?

I Built web sites in Perl, Ruby, Python,

PHP, Java, and Erlang

I Worked at AmieStreet.com -

PHP/Erlang/Python

I (Re)wrote Erlang bindings for Thrift

I Now at Cloudera (unrelated, but ask me

about it!)

Scope
You might care about this talk if your web site is...

I mostly dynamic content

I built by multiperson/multiskill teams

I hosted on dedicated machines

I your fulltime job

I trying to do something complicated

Popular Web Languages
...until next year

I PHP

I Ruby

I Python

I Perl

I ASP.NET?

What have they got that make them excel

for web development?

Popular Web Languages
...until next year

I PHP

I Ruby

I Python

I Perl

I ASP.NET?

What have they got that make them excel

for web development?

Where PHP Excels

This page intentionally left blank.

I No concurrency model

I Templating, string manipulation

I Implicit casting, “sloppy” semantics

I Availability of web frameworks, common code,
etc

I Availability of designer-programmers

I Large existing codebases

Where PHP Excels
...seriously!

I No concurrency model

I Templating, string manipulation

I Implicit casting, “sloppy” semantics

I Availability of web frameworks, common

code, etc

I Availability of designer-programmers

I Large existing codebases

Where Erlang Excels
Preaching to the Choir

I Great concurrency model

I Great reliability features

I Achieving 5 nines is relatively easy

I Dealing with inter-process

communication and async processes is

natural

Where PHP sucks
for the forseeable future

I No concurrency possible.

I All inter-request communication must

go through an external party

I Each thread ties up a web server process

I Asynchronous actions are hard

I Ever seen a daemon in PHP?

I Did you still see it 100M requests later?

Where PHP sucks
for the forseeable future

I No concurrency possible.

I All inter-request communication must

go through an external party

I Each thread ties up a web server process

I Asynchronous actions are hard

I Ever seen a daemon in PHP?

I Did you still see it 100M requests later?

Where Erlang sucks
...at least, for now

I Template designers can’t pick it up

easily (“weird syntax”)

I Immutability feels unnatural

I String manipulation, unicode support,

etc

I Obtuse error printouts

I Few (and immature) web frameworks

An observation

I Where PHP sucks is where Erlang

excels!

I And vice versa!

I Wouldn’t it be nice to have the good

parts of both?

I Let’s glue them together!

An observation

I Where PHP sucks is where Erlang

excels!

I And vice versa!

I Wouldn’t it be nice to have the good

parts of both?

I Let’s glue them together!

An observation

I Where PHP sucks is where Erlang

excels!

I And vice versa!

I Wouldn’t it be nice to have the good

parts of both?

I Let’s glue them together!

Enter Thrift
...mmmm... glue...

I Thrift is glue that makes multilingual

development easy!

I Cross-language RPC and serialization

library

I Bindings for C++, C#, Java, Python,

Ruby, Perl, PHP...

I plus Haskell, Smalltalk, ObjC/Cocoa,

OCaml

I And of course: Erlang!

A Touch of History

I Originally developed by Facebook

(mainly PHP shop)

I Open sourced in Spring 2007

I Now in Apache Incubator, 1.0 release

“any time now”

I Reasonably widespread usage

Thrift Features

Serialization

I Primitives and complex datatypes

I Cross-platform cross-language

I Multiple Protocol implementations

I Backwards compatibility built in

I Useful for long-term storage, too

Thrift Features

RPC

I Makes remote interlanguage function

calls feel like local ones

I Serializes calls, results, exceptions over a

Transport (eg socket)

I Provides Service and Client abstractions

I Comes with well-written client and

server implementations

Why Design with Services?
...promise this is the only slide with “SOA” on it

A service-oriented-architecture gives you:

I Modularity with clean APIs

I Vertical partitioning for scalability,

hardware specialization, or language

specialization

I Long-lived data in RAM

e.g: Search, Storage, “Smart Data”

Thrift vs other options

I CORBA - less language support, totally

unfriendly

I Protobuffers - OSS version doesn’t

include RPC stack
I Roll-your-own - bug prone and tedious

I Though marginally more efficient

I HTTP/REST/JSON - deep structures

without types are inconvenient

Steps to use Thrift

1. Write a .thrift file

2. Run thrift -gen erl -gen py

foo.thrift

3. Do some real work (fill in

implementation)

4. Profit

Steps to use Thrift

1. Write a .thrift file

2. Run thrift -gen erl -gen py

foo.thrift

3. Do some real work (fill in

implementation)

4. Profit

Steps to use Thrift

1. Write a .thrift file

2. Run thrift -gen erl -gen py

foo.thrift

3. Do some real work (fill in

implementation)

4. Profit

Steps to use Thrift

1. Write a .thrift file

2. Run thrift -gen erl -gen py

foo.thrift

3. Do some real work (fill in

implementation)

4. Profit

Sounds like fun!
DEMO!

A Case Study
Amie Street Pricing Server

I AS’s first project in Erlang

I Handles all dynamic prices and

commerce transactions

I Runs on a non-dedicated pair of nodes

Dynamic Pricing on Amie Street
I Online mp3 store with dynamic pricing

I Each time a song is bought, its price

increases

I Prices are functions of the number of

previously completed buys

I Can never sell cheaper than the price

function

I This is actually really tricky!

What to do about concurrency?
I Alice goes to AmieStreet.com and sees

a song at 30 cents.

I Bob also sees the same song at 30 cents.

I They both click “buy” at the same

time, and see a confirmation dialog for

their item at 30c.

I Alice confirms payment and receives

song at 30 cents.

I What price does Bob get?

The Solution

I Give everyone tickets at price points

I Expire those tickets for non-conversions,

logouts, etc

I Sounds like a problem for Erlang!

I Model carts as processes, linked to

ticket releasers which handle

cleanup, etc.

No idea how we would have solved this in

PHP

The Solution

I Give everyone tickets at price points

I Expire those tickets for non-conversions,

logouts, etc

I Sounds like a problem for Erlang!

I Model carts as processes, linked to

ticket releasers which handle

cleanup, etc.

No idea how we would have solved this in

PHP

GetCa r tRe su l t g e tCa r t (
1 : Req In fo i n f o ,
2 : l i s t <Reques tedCar tObjec t> r e q u e s t e d o b j e c t s)

BuyCar tResu l t buyCart (1 : i 3 2 u s e r i d , 2 : i 3 2 u n i q i d)
boo l c a n c e lC a r t (1 : i 3 2 u s e r i d , 2 : i 3 2 u n i q i d)

l i s t <P r i c e I n f o > ge tA lbumPr i c e I n f o (
1 : Req In fo i n f o , 2 : l i s t <i 32> a l bum id s)

l i s t <P r i c e I n f o > g e t S ongP r i c e I n f o (
1 : Req In fo i n f o , 2 : l i s t <i 32> s o n g i d s)

Results

I We shipped a working product in about

a month and a half

I As of January, 4100loc, with lots of new

features

I Separated the difficult distributed

system from the PHP code

I Black box “in a good way” to front-end

engineers

I Very stable and performant!

More Case Studies

Facebook Chat

I MochiWeb “channel” servers for long

poll

I Uses thrift client to talk to

presence servers (C++)

I Uses server to hear events from PHP

I Read the FB Eng blog for detailed info

and a neat video

More Case Studies

Songza.com

I “Web jukebox” aggregates media

searches from several backend APIs

I Used to be serial curl requests from PHP

I Moved to an Erlang Thrift service to do

requests in parallel

I Way easier! Took 2-3 days for an Erlang

n00b

Links

I Thrift: http://bit.ly/thrift

I ThriftErlSkel:

http://bit.ly/terlskel

I Twitter - @tlipcon

	Outline
	Introduction
	Erlang vs PHP
	Thrift
	A Case Study

