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What is Campfire?

• Web based group chat service.

• A few thousand simultaneous users, and 
growing rapidly.

• Primarily a Ruby on Rails application backed 
by MySQL, but ...

• Part of it was recently rewritten in Erlang.
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Architecture
Message

Ruby on Rails
Application

Message Table

Javascript 
Cache

Poll Server
Pollers
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Poll Process

• Every 3 seconds.

• Client authenticates itself and sends the ID 
of the last message it has seen.

• Server responds with the contents of 
Javascript cache table.
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Performance 
Requirements

• Normal daily traffic around 1500 requests 
per second.

• Spontaneous synchronization.

• Memory and CPU footprint.
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Timeline

• First version was Ruby based, never made it 
to production. 

• Next, C based poll server using the FastCGI 
specification.

• Ruby Mongrel handler prototype.

• Erlang poll server.
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Ruby Servers

• Small, only 127 lines of code.

• Clean, nicely factored code.

• Great for developing against.

• Throughput and CPU/memory consumption 
make it unsuitable for production.
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C FastCGI Server

• 397 lines of code.

• Fast, very low memory and CPU footprint.

• Not designed to be extensible.

• Needs one OS process for each 
simultaneous request. *
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Story Time
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Erlang Server

• 273 lines of code, 63 of them for logging.

• Makes use of existing battle tested code like 
Mochiweb and OTP behaviors.

• Modular and extensible.

• As fast as the C version.

• Handles spontaneous synchronization well, 
thanks to Erlang processes. *
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Recap

Ruby C Erlang
LOC 127 397 273
Req/sec 250-350 1800 1800
Response Time 20ms 2-3ms 2-3ms
OS Processes n/a 80 1
Extensible Yes No Yes
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Operational Details

• Not much information out there about how 
exactly to host Erlang applications.

• Settled on run_erl ... and later added runit.

• Three nodes behind HAproxy.

• Use Capistrano to deploy, no hot code 
reload.
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Memory Consumption

• Processes climbing to >= 1GB resident.

• Lots of short lived binaries and strings 
floating around, particularly in the MySQL 
processes.

•erlang:system_flag(fullsweep_after, 0)

• Memory usage now hovers around 
150-200MB and doesn’t exceed 250MB.
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runit vs. Heart

• Heart is great.

• But what happens when the VM runs out of 
memory?

• Had existing runit tooling and automation.

http://smarden.sunsite.dk/runit/
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What’s next?

• Experimenting with Comet.

• CouchDB (via Chef)

• RabbitMQ

• Who knows?
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