
Campfire Loves Erlang
Mark Imbriaco

mark@37signals.com

1Friday, June 26, 2009

mailto:mark@37signals.com
mailto:mark@37signals.com


What is Campfire?

2Friday, June 26, 2009



What is Campfire?

• Web based group chat service.

2Friday, June 26, 2009



What is Campfire?

• Web based group chat service.

• A few thousand simultaneous users, and 
growing rapidly.

2Friday, June 26, 2009



What is Campfire?

• Web based group chat service.

• A few thousand simultaneous users, and 
growing rapidly.

• Primarily a Ruby on Rails application backed 
by MySQL, but ...

2Friday, June 26, 2009



What is Campfire?

• Web based group chat service.

• A few thousand simultaneous users, and 
growing rapidly.

• Primarily a Ruby on Rails application backed 
by MySQL, but ...

• Part of it was recently rewritten in Erlang.

2Friday, June 26, 2009



3Friday, June 26, 2009



4Friday, June 26, 2009



Architecture
Message

Ruby on Rails
Application

Message Table

Javascript 
Cache

Poll Server
Pollers

5Friday, June 26, 2009



6Friday, June 26, 2009



Poll Process

7Friday, June 26, 2009



Poll Process

• Every 3 seconds.

7Friday, June 26, 2009



Poll Process

• Every 3 seconds.

• Client authenticates itself and sends the ID 
of the last message it has seen.

7Friday, June 26, 2009



Poll Process

• Every 3 seconds.

• Client authenticates itself and sends the ID 
of the last message it has seen.

• Server responds with the contents of 
Javascript cache table.

7Friday, June 26, 2009



Performance 
Requirements

8Friday, June 26, 2009



Performance 
Requirements

• Normal daily traffic around 1500 requests 
per second.

8Friday, June 26, 2009



Performance 
Requirements

• Normal daily traffic around 1500 requests 
per second.

• Spontaneous synchronization.

8Friday, June 26, 2009



Performance 
Requirements

• Normal daily traffic around 1500 requests 
per second.

• Spontaneous synchronization.

• Memory and CPU footprint.

8Friday, June 26, 2009



Timeline

9Friday, June 26, 2009



Timeline

• First version was Ruby based, never made it 
to production. 

9Friday, June 26, 2009



Timeline

• First version was Ruby based, never made it 
to production. 

• Next, C based poll server using the FastCGI 
specification.

9Friday, June 26, 2009



Timeline

• First version was Ruby based, never made it 
to production. 

• Next, C based poll server using the FastCGI 
specification.

• Ruby Mongrel handler prototype.

9Friday, June 26, 2009



Timeline

• First version was Ruby based, never made it 
to production. 

• Next, C based poll server using the FastCGI 
specification.

• Ruby Mongrel handler prototype.

• Erlang poll server.

9Friday, June 26, 2009



Ruby Servers

10Friday, June 26, 2009



Ruby Servers

• Small, only 127 lines of code.

10Friday, June 26, 2009



Ruby Servers

• Small, only 127 lines of code.

• Clean, nicely factored code.

10Friday, June 26, 2009



Ruby Servers

• Small, only 127 lines of code.

• Clean, nicely factored code.

• Great for developing against.

10Friday, June 26, 2009



Ruby Servers

• Small, only 127 lines of code.

• Clean, nicely factored code.

• Great for developing against.

• Throughput and CPU/memory consumption 
make it unsuitable for production.

10Friday, June 26, 2009



C FastCGI Server

11Friday, June 26, 2009



C FastCGI Server

• 397 lines of code.

11Friday, June 26, 2009



C FastCGI Server

• 397 lines of code.

• Fast, very low memory and CPU footprint.

11Friday, June 26, 2009



C FastCGI Server

• 397 lines of code.

• Fast, very low memory and CPU footprint.

• Not designed to be extensible.

11Friday, June 26, 2009



C FastCGI Server

• 397 lines of code.

• Fast, very low memory and CPU footprint.

• Not designed to be extensible.

• Needs one OS process for each 
simultaneous request. *

11Friday, June 26, 2009



Story Time

12Friday, June 26, 2009



Erlang Server

13Friday, June 26, 2009



Erlang Server

• 273 lines of code, 63 of them for logging.

13Friday, June 26, 2009



Erlang Server

• 273 lines of code, 63 of them for logging.

• Makes use of existing battle tested code like 
Mochiweb and OTP behaviors.

13Friday, June 26, 2009



Erlang Server

• 273 lines of code, 63 of them for logging.

• Makes use of existing battle tested code like 
Mochiweb and OTP behaviors.

• Modular and extensible.

13Friday, June 26, 2009



Erlang Server

• 273 lines of code, 63 of them for logging.

• Makes use of existing battle tested code like 
Mochiweb and OTP behaviors.

• Modular and extensible.

• As fast as the C version.

13Friday, June 26, 2009



Erlang Server

• 273 lines of code, 63 of them for logging.

• Makes use of existing battle tested code like 
Mochiweb and OTP behaviors.

• Modular and extensible.

• As fast as the C version.

• Handles spontaneous synchronization well, 
thanks to Erlang processes. *

13Friday, June 26, 2009



Recap

Ruby C Erlang
LOC 127 397 273
Req/sec 250-350 1800 1800
Response Time 20ms 2-3ms 2-3ms
OS Processes n/a 80 1
Extensible Yes No Yes

14Friday, June 26, 2009



Operational Details

15Friday, June 26, 2009



Operational Details

• Not much information out there about how 
exactly to host Erlang applications.

15Friday, June 26, 2009



Operational Details

• Not much information out there about how 
exactly to host Erlang applications.

• Settled on run_erl ... and later added runit.

15Friday, June 26, 2009



Operational Details

• Not much information out there about how 
exactly to host Erlang applications.

• Settled on run_erl ... and later added runit.

• Three nodes behind HAproxy.

15Friday, June 26, 2009



Operational Details

• Not much information out there about how 
exactly to host Erlang applications.

• Settled on run_erl ... and later added runit.

• Three nodes behind HAproxy.

• Use Capistrano to deploy, no hot code 
reload.

15Friday, June 26, 2009



Memory Consumption

16Friday, June 26, 2009



Memory Consumption

• Processes climbing to >= 1GB resident.

16Friday, June 26, 2009



Memory Consumption

• Processes climbing to >= 1GB resident.

• Lots of short lived binaries and strings 
floating around, particularly in the MySQL 
processes.

16Friday, June 26, 2009



Memory Consumption

• Processes climbing to >= 1GB resident.

• Lots of short lived binaries and strings 
floating around, particularly in the MySQL 
processes.

•erlang:system_flag(fullsweep_after, 0)

16Friday, June 26, 2009



Memory Consumption

• Processes climbing to >= 1GB resident.

• Lots of short lived binaries and strings 
floating around, particularly in the MySQL 
processes.

•erlang:system_flag(fullsweep_after, 0)

• Memory usage now hovers around 
150-200MB and doesn’t exceed 250MB.

16Friday, June 26, 2009



runit vs. Heart

17Friday, June 26, 2009



runit vs. Heart

• Heart is great.

17Friday, June 26, 2009



runit vs. Heart

• Heart is great.

• But what happens when the VM runs out of 
memory?

17Friday, June 26, 2009



runit vs. Heart

• Heart is great.

• But what happens when the VM runs out of 
memory?

• Had existing runit tooling and automation.

17Friday, June 26, 2009



runit vs. Heart

• Heart is great.

• But what happens when the VM runs out of 
memory?

• Had existing runit tooling and automation.

http://smarden.sunsite.dk/runit/

17Friday, June 26, 2009

http://smarden.sunsite.dk/runit/
http://smarden.sunsite.dk/runit/


What’s next?

18Friday, June 26, 2009



What’s next?

• Experimenting with Comet.

18Friday, June 26, 2009



What’s next?

• Experimenting with Comet.

• CouchDB (via Chef)

18Friday, June 26, 2009



What’s next?

• Experimenting with Comet.

• CouchDB (via Chef)

• RabbitMQ

18Friday, June 26, 2009



What’s next?

• Experimenting with Comet.

• CouchDB (via Chef)

• RabbitMQ

• Who knows?

18Friday, June 26, 2009



Questions?

19Friday, June 26, 2009


