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What is QuickCheck?

● QuickCheck test software based on properties

● Write one property and let QuickCheck do the 
tedious work of creating a lot of test cases

?FORALL(S, string(),
        S == lists:reverse(
               lists:reverse(S))).



What is QuickCheck?

● Test cases are generated randomly from 
properties

● Test data is provided by generators

string() ->
    list(char()).

sip_response_code() →
    choose(100, 699).



What is a Domain Specific 
Language?

”In software development, a domain-
specific language (DSL) is a programming 

language or specification language 
dedicated to a particular problem domain, a 

particular problem representation 
technique, and/or a particular solution 

technique”

- Wikipedia



What is SIP Message Manipulation?
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What is SIP Message Manipulation?
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Scope

● Our system has two inputs and one output:

Program

Message

Altered MessageSMM



Scope
● Our system has two inputs and one output:

SMM

Ruleset “my ruleset”
    If
        SIP:To.sip_uri.host == “erlang.org”
    Do
        SIP:Subject := “Erlang rocks!”
    End
End

INVITE sip:joe@erlang.org SIP/2.0
To: Joe <sip:joe@erlang.org>
From: Robert <sip:robert@erlang.org>
Call-ID: a84b4c76e66710@erlang.org
Subject: Hello Joe!
Contact: <sip:robert@erlang.org>

INVITE sip:joe@erlang.org SIP/2.0
To: Joe <sip:joe@erlang.org>
From: Robert <sip:robert@erlang.org>
Call-ID: a84b4c76e66710@erlang.org
Subject: Erlang rocks!
Contact: <sip:robert@erlang.org>



Scope

● We have narrowed down the scope to two 
types of testing

– Symmetry

– Functionality assurance (“crash testing”)

● Theoretically it is possible to test all 
functionality

– Probably very hard!

● We are testing code that does not exist until 
delivered to the customer



How the Tests Are Set Up

● Symmetry tests send test data on a round trip 
in the system

?FORALL(Program, program(),
        begin
            String = to_string(Program),
            Program == parse(
                         scan(String))
        end)

Scanner Parser

QuickCheck



How the Tests Are Set Up

● Functionality assurance tests excersizes the 
code with random test data and makes sure it 
doesn't crash

?FORALL(Program, program(),
        begin
            String = to_string(Program),
            check(parse(scan(String))),
            true
        end)
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Our Initial Approach

● Home made generators

● Introduced code duplication between the 
implementation and test code

– Takes time, hard to maintain



Using the Grammar Generator

● Generates test data from the domain of all 
possible permutations of programs valid in the 
language

● Makes sure other parts of the system accepts 
valid input according to the grammar

● Tests the grammar too, each failed test case 
can indicate a fault in the grammar



Faults Found

● Inconsistencies in the output produced by the 
grammar

– The internal format had different representations 

of the same data

● Crashes in the semantic checks

– Valid programs produced crashes



Lessons Learned

● Don't try to keep up with your code, write 
generators that do it for you

● Implement symmetric input / output 
functions, even if you don't need it

– Great for testing symmetry

– Data round trips can be tested at various points in 

your program, the deeper the better



Thank you for listening!

Questions please!


