Using QuickCheck for testing a
domain specific language

Adam Lindberg
Erlang Training and Consulting

What is QuickCheck?

* QuickCheck test software based on properties

* Write one property and let QuickCheck do the
tedious work of creating a lot of test cases

?FORALL(S, string(),
== lists:reverse(
lists:reverse(S))).

What is QuickCheck?

» Test cases are generated randomly from
properties

» Test data is provided by generators

string() ->
T1ist(char()).

sip_response_code() -
choose (100, 699).

What is a Domain Specific
Language’

"In software development, a domain-
specific language (DSL) is a programming
language or specification language
dedicated to a particular problem domain, a
particular problem representation
technique, and/or a particular solution
technique”

- Wikipedia

What is SIP Message Manipulation?

Network Network
/
/
/ AN
Vs N
N
/

N
/ AN
YA .
N
/ N

P SPStack . P SMM Appl?chtion B

What is SIP Message Manipulation?

Program

] S e

Y

Code
Generation

i

SIP Message ——J» Driver ——J» SIP Message'

Scope

e Our system has two inputs and one output:

Program

R

@ Altered Message

al

Message

Scope
* Our system has two inputs and one output:

Ru1es$t “my ruleset”
I

SIP:To.sip_uri.host == “erlang.org”
Do
SIP:Subject := “Erlang rocks!”
End
End \
INVITE sip:joe@erlang.org SIP/2.0

To: Joe <sip:joe@erlang.org>

From: Robert <sip:robert@erlang.org>

Call-ID: a84b4c76e66710@erlang.org
Subject: Erlang rocks!
/ Contact: <sip:robert@erlang.org>

INVITE sip:joe@erlang.org SIP/2.0
To: Joe <sip:joe@erlang.org>

From: Robert <sip:robert@erlang.org>
Call-ID: a84b4c76e66710@erlang.org
Subject: Hello Joe!

Contact: <sip:robert@erlang.org>

Scope
 We have narrowed down the scope to two
types of testing
- Symmetry
- Functionality assurance (“crash testing”)

* Theoretically it is possible to test all
functionality

- Probably very hard!

* We are testing code that does not exist until
delivered to the customer

How the Tests Are Set Up

 Symmetry tests send test data on a round trip
in the system

?FORALL(Program, program(),

begin
String = to_string(Program),
Program == parse(
scan(String))
end)
QuickCheck

—P» Scanner || Parser

How the Tests Are Set Up

* Functionality assurance tests excersizes the
code with random test data and makes sure it
doesn't crash

?FORALL(Program, program(),
begin
String = to_string(Program),
check(parse(scan(String))),
true
end)

quickCheck — B{ scamner | Be{ Parser > Checks

Our Initial Approach

 Home made generators

* Introduced code duplication between the
implementation and test code

- Takes time, hard to maintain

Using the Grammar Generator

* Generates test data from the domain of all
possible permutations of programs valid in the
language

* Makes sure other parts of the system accepts
valid input according to the grammar

» Tests the grammar too, each failed test case
can indicate a fault in the grammar

Faults Found

* |[nconsistencies in the output produced by the
grammar

- The internal format had different representations
of the same data

 Crashes in the semantic checks

- Valid programs produced crashes

Lessons Learned

* Don't try to keep up with your code, write
generators that do it for you

* Implement symmetric input / output
functions, even if you don't need it

- Great for testing symmetry

- Data round trips can be tested at various points in
your program, the deeper the better

Thank you for listening!

Questions please!

