
Using QuickCheck for testing a
domain specific language

Adam Lindberg

Erlang Training and Consulting

What is QuickCheck?

● QuickCheck test software based on properties

● Write one property and let QuickCheck do the
tedious work of creating a lot of test cases

?FORALL(S, string(),
 S == lists:reverse(
 lists:reverse(S))).

What is QuickCheck?

● Test cases are generated randomly from
properties

● Test data is provided by generators

string() ->
 list(char()).

sip_response_code() →
 choose(100, 699).

What is a Domain Specific
Language?

”In software development, a domain-
specific language (DSL) is a programming

language or specification language
dedicated to a particular problem domain, a

particular problem representation
technique, and/or a particular solution

technique”

- Wikipedia

What is SIP Message Manipulation?

Network Network

SIP Stack SMM
SIP

Application

SIP

Proxy

What is SIP Message Manipulation?

Scanner Parser
Semantic

Checks

Code

Generation

DriverSIP Message SIP Message'

Program

Scope

● Our system has two inputs and one output:

Program

Message

Altered MessageSMM

Scope
● Our system has two inputs and one output:

SMM

Ruleset “my ruleset”
 If
 SIP:To.sip_uri.host == “erlang.org”
 Do
 SIP:Subject := “Erlang rocks!”
 End
End

INVITE sip:joe@erlang.org SIP/2.0
To: Joe <sip:joe@erlang.org>
From: Robert <sip:robert@erlang.org>
Call-ID: a84b4c76e66710@erlang.org
Subject: Hello Joe!
Contact: <sip:robert@erlang.org>

INVITE sip:joe@erlang.org SIP/2.0
To: Joe <sip:joe@erlang.org>
From: Robert <sip:robert@erlang.org>
Call-ID: a84b4c76e66710@erlang.org
Subject: Erlang rocks!
Contact: <sip:robert@erlang.org>

Scope

● We have narrowed down the scope to two
types of testing

– Symmetry

– Functionality assurance (“crash testing”)

● Theoretically it is possible to test all
functionality

– Probably very hard!

● We are testing code that does not exist until
delivered to the customer

How the Tests Are Set Up

● Symmetry tests send test data on a round trip
in the system

?FORALL(Program, program(),
 begin
 String = to_string(Program),
 Program == parse(
 scan(String))
 end)

Scanner Parser

QuickCheck

How the Tests Are Set Up

● Functionality assurance tests excersizes the
code with random test data and makes sure it
doesn't crash

?FORALL(Program, program(),
 begin
 String = to_string(Program),
 check(parse(scan(String))),
 true
 end)

Scanner Parser
Semantic

Checks
QuickCheck

Our Initial Approach

● Home made generators

● Introduced code duplication between the
implementation and test code

– Takes time, hard to maintain

Using the Grammar Generator

● Generates test data from the domain of all
possible permutations of programs valid in the
language

● Makes sure other parts of the system accepts
valid input according to the grammar

● Tests the grammar too, each failed test case
can indicate a fault in the grammar

Faults Found

● Inconsistencies in the output produced by the
grammar

– The internal format had different representations

of the same data

● Crashes in the semantic checks

– Valid programs produced crashes

Lessons Learned

● Don't try to keep up with your code, write
generators that do it for you

● Implement symmetric input / output
functions, even if you don't need it

– Great for testing symmetry

– Data round trips can be tested at various points in

your program, the deeper the better

Thank you for listening!

Questions please!

