
FUNCTIONAL
PROGRAMMING WITH A
MAINSTREAM LANGUAGE

How does FP look like from enterprise

Sadek Drobi Consultant and technology evangelist sadache@twitter

Introduction to the project’s context

� Media planning software: Indicators Calculations

� Performance constrains

� Flexibility needed: more calculations need to be
added easily and declarativelyadded easily and declaratively

� Any latency will be apparent?

� Productivity and interactivity of the GUI are crucial

� A lot of data on the screen with a lot
of simultaneous calculations on each user interaction

How to approach performance in this case?

� Optimization of objects creation?

� Reuse Data Structures

� Use low level looping constructs and mutable arrays

� Functional approach with laziness?� Functional approach with laziness?

� No mutation

� Use Streams as delayed lists

� Compose functions for more modularity

Do it the Lean way

� Started two different strategies of implementation:

� imperative with excessive use of loops and mutation

� functional

What I am and what I am not!

� I am a mainstream OOP and imperative
programmer: Java, C#

� I am not a functional programming geek: at least I
wasn’t prior to this experiencewasn’t prior to this experience

� All my FP knowledge dates back to university and
school time: knowledge of Lisp that most of us
acquired and forgot before stepping into enterprise

� I like to search for applying the suitable
programming paradigm to the problem at hand

Do it the Lean way

� Started two different strategies of implementation:

� imperative with excessive use of loops and mutation

� functional

What did functional programming
buy me more in this experiment?

Talking Paradigms: OOP vs. Streams

Talking Paradigms: OOP vs. Streams

� Streams as delayed lists
�Modularity

� Performance

� Immutability
� Cuts down complexity enhancing readability : no state
tracking

� Your OO favorite language is optimized for object
creation, let the garbage collector do its job!

� Code safety

� OOP is great for encapsulation

Streams as delayed lists: Modularity

� A program needs to change state to be useful

� In a classical imperative approach, state is all over the
place and the program consists of sequential changes
of it

� With Streams, state is taken outside the program and � With Streams, state is taken outside the program and
gets passed through compound (composed) functions
that operate on the stream to produce the result

� With long lists, and when you do not want to iterate the
lists twice, delayed lists with list comprehensions give the
opportunity to express logic modularly (partitioned into
semantically distinct units)

Streams as delayed lists: Modularity

And in some other module…

yield …

Streams as delayed lists: Performance

� No useless lists walkthroughs

� Quite tricky to choose where to be strict (.ToList())

� Yet it can be viewed as a decision that can be
differed for laterdiffered for later

Immutability: Complexity Down, Enhance
Readability

� No state tracking

� Substitution model is far easier to reason about

� Code turned to work correctly more often from the first time!

�When correctly composing pure function, I can ignore When correctly composing pure function, I can ignore
completely semantics of both the functions and focus on
semantics of the new function to go on. That never
seemed to work when mutable objects are shared.

� Shared mutable state cries for a debugger

� State in not compositional

Immutability: Complexity Down, Enhance
Readability

Mosquito Programming vs. Functional Programming

Code Block Effect Shared
State

Zee program

Initial stateResult

Immutability: Give Your GC Some Work

� Classes Vs. Objects : Procedural vs. OOP

� In most E-Applications I see no OOP applied but
procedural

� Share and Cache� Share and Cache

Immutability: Learnt to share

Immutability: Caching, Finely optimized for
context

� Data retrieved from database don’t need to be
mutable all over the application even if they are
modifiable in some contexts

� Data Views� Data Views

Caching: Finely optimized for context

Territory
Data

Territory modifier
interface

Territory
Data

Immutable
Representation

Read/Write
Data

Hypotheses
modifier interfaceCould be cached

while not changing
screen, makes

perfect sense in the
software use.

Then you profit
from all what you

memoized!

Immutability: Code safety

� Code Safety

� Reusing mutable structure can have the effect of
representing old obsolete values as current

�WPF example

Old values

Mutations

Result

OOP: Encapsulation

� Immutability doesn’t mean abandoning object
orientation

� OOP encapsulation for better code organization

� With immutability, all object methods can be � With immutability, all object methods can be
memoized if needed, this is interesting especially
when sharing instances

OOP: Encapsulation

Functions as First Class Values

Functions as First Class Values

� Mutable State Vs. Closures and Partial Application

� Presenter return actions to be executed on the view

� Continuation monad

�More interface responsiveness�More interface responsiveness

� Less apparent latency

� AOP with no framework (Memoize)

� With Functions as First Class Values a lot of Design
Patterns become obsolete

Closures and Partial Functions Application

� Being immutable everywhere, you will be faced
sometimes a situation where you have different
parameters values of a function in different scopes

� Yet you want to stay immutable and modular!� Yet you want to stay immutable and modular!

� Partial application supports your modular design

Closures and Partial Functions Application

In some module we have

And in some otherAnd in some other

Then this could be passed to yet another!

MVP the Functional way

� Model View Presenter

View

IView Presenter

Model

MVP the Functional way

� Presenter as a service

WPF Monad

� WPF and threads

�Graphical components are not truthful about their types

�When threads are engaged, they no longer present
their type

� View<ContractType>

� from v in view …

� Threads logic and freezing is done by the monad

� Unified syntax vs. Special syntax or DSLs

� Same could be done for exceptions

WPF Monad

Quite convenient to use several views in one expression:

WPF Monad: Implementation

WPF Monad: Implementation

WPF Monad

� WPF and threads

�Graphical components are not truthful about their types

�When threads are engaged, they no longer present
their type

� View<ContractType>

� from v in view …

� Threads logic and freezing is done by the monad

� Unified syntax vs. Special syntax or DSLs

� Same could be done for exceptions

Design Patterns

� Most GOF Design Patterns are not of a great values
with the existence of a higher order functions (closure)

� Lambda expressions are very easy to create at call site
and are quite expressive

� Polymorphism is hard to reason about� Polymorphism is hard to reason about

� Functions are compositional

Recursion, costly but clearer and more
readable?

Recursion, costly but clearer and
more readable?

� Recursive calls are often more expressive

� Not optimized C# (tail recursion)

� Use fold and map

�Memoize it because you are pure!�Memoize it because you are pure!

Expressiveness of recursive calls

� They are often more expressive

Not optimized in C#

� Tail recursion

� Use fold and map

� Select and Aggregate

� Abstractions of some recursive forms that help
being declarative without sacrificing performance

Not optimized in mainstream languages

being declarative without sacrificing performance

� Memoize it because you are pure!

� Memoize can be introduced as an aspect

� Interchange MemoizeFix and Y for performance
tuning

Not optimized in mainstream languages

tuning

Another side effect of purity: order does
not matter

Another side effect of purity: order
does not matter

� Future<T>

� More processors? No problem!

Purity: Future<T>

Purity: More Processors

� Parallelize it, you are pure

� LinQ .AsParallel()

� Or are you?

� Failed on first shared mutable state� Failed on first shared mutable state

� Need locks in Memoize

Purity: More Processors

Architecture View

Architectural View

Interface
Technology (WPF)

DB

Business Logic

DAOs PresentersData
Views

Context

Architectural View

Interface
Technology (WPF)

DB

Business Logic

DAOs PresentersData
Views

Context

In FP Terms:

Is IO or “Effect”

Is pure

Overview

� Mutability is addictive and effects are like cancer

� Imperative programming is very tempting, only
discipline can help in a mixed paradigm
environmentenvironment

� Less is more, FP simplicity is key to productivity

Regrets

� Function types are ugly without type inference

� No generic local values and partial type constructor
application

� Laziness unleashes evil! Keep attention
� No checked exception� No checked exception
� Effects not expressed in the type system

� Null everywhere is a big source of bugs

� We might be not doing too bad about Structure
Abstraction (especially hierarchical) but we do no
Computation Abstraction
� Null, exceptions, gui main thread, delays…

Inspiration

See you around

� Sadache@Twitter

� www.sadekdrobi.com

� contact@sadekdrobi.com

