
Connecting QuickCheck 

and RoseRT 

to test Radio Base Stations

Hans Svensson
Erlang Factory - London 2009

June 25 2009



Introduction

• Strangely not all systems are developed 

using Erlang

• But we can still have fun and use Erlang

• QuickCheck has already been tested in many 

different settings (C, Java, Protocol-testing, 

etc) what about a system in RoseRT?



Rational Rose Real-time -- RoseRT

• Based on UML with real-time notation

• Hierarchical and message based

• Uses actor model concurrency

• Generates C++ code

Capsule

Port Protocol



Existing Test Configuration

Regression 
test script

RoseRT/C++

Proxy

SUT



New Test Configuration

RoseRT/C++

Erlang
Adapter

SUT

Erlang/QuickCheck

QuickCheck
specification

� Proof of concept
� Lots of manual work
� Not reuseable
� Not generic



Generalization -- Main Challenges

• Connecting RoseRT to 

Erlang/QuickCheck

• Defining a ‘self contained’ part of 

the Model

• Marshalling of data between 

Erlang and C++

• Signal generators

+ The usual QuickCheck challenges!



Generalization

RoseRT/C++

Erlang
Adapter

SUT

Erlang/QuickCheck

QuickCheck
specification

Already quite generic
(modulo signal names)

Using erl_interface/ei



Generalization -- Main Challenges

• Connecting RoseRT to 

Erlang/QuickCheck

• Defining a ‘self contained’ part 
of the Model

• Marshalling of data between 

Erlang and C++

• Signal generators

� XMI/XML representation of model
� In-house developed for other purposes
� Some work to find signal definitions

Domain knowledge useful!



Generalization

RoseRT/C++

Erlang
Adapter

SUT

Marshalling
code

Include

Erlang/QuickCheck

QuickCheck
specification

Signal/Message
generators

Include

XMI/XML model

Generate



Signal/Message Generator

• They are just compound data types

• QuickCheck can do int,boolean,char,etc –

simply put the pieces together

• Sometimes not clever enough!

signal open_account:

int account_nr

int pin_code

float balance

open_account()->

{signal,open_account,

int(),int(),float()}.

• Not likely to match account with PIN code

• Almost impossible to auto generate



Marshalling example

Erlang

{pointer, ptr, class_A, {classA, ...}}

C++

ClassA* ptr = &marshall_ClassA(...);

Marshalling a pointer? An integer? No!



Marshalling problem – Private attributes

A

public
int x,...

private
int y,...

Ghost_A

public
int x,...

int y,...

Marshalling functions can’t access private fields!

All public

OK, except for a technical detail...



Marshalling problem – Private attributes

Ghost_A

public
int x;

int y;

OK, except for a technical detail...

Memory alignment!

A* ptrA; Ghost_A* ptrGA;

ptrA = new A(1,2);

ptrGA = (Ghost_A *)ptrA;

A

public
int x;

private
int y;

ptrGA->x <==> ptrA->x

Now we expect:

ptrGA->x <==> ptrA->y

public
int dummy;

int x;

int y;

But instead:

Add dummy



Summary

• With a bit of work we could benefit from 

QuickCheck while testing a RoseRT system

• The solution is general, but not really 

general enough – more work is needed

• Generators with implicit meanings are hard 

to generalize in a clever way

We had fun!



Acknowledgements

• Jia Wang and Shyun Shyun Yeoh, 
Chalmers University of Technology

• John Hughes, Quviq

• Andreas Granberg, Ericsson AB


