
Creative Payment Solutions

Testing – but not your Patience
Erik Stenman

Kreditor

Testing - but not your Patience
 Experience of testing from a fast moving start up.
 Encouraging testing in a small company.
 Testing through the whole software life cycle.
 Our testing tool chain.
 Automate “everything”.
 Make test results visible.

Kreditor
 Founded in 2005.
 We provide payment solutions to internet shops

in Scandinavia.
 We have over 3000 shops as our customers.
 Largest sites in Scandinavia as customers.
 We need to be online 24/7.
 We have a competitive market and need to

continuously introduce new features and
services.

Testing is Important...
•We have very short time to market, for simple

changes the time from idea to finished
integration can be less than one hour.

• It is crucial for us to have a testing process
which guarantees:
–That it works.
–That it is used.
–Always.
★ “Everyone” agrees that testing is important...

... still, “no one” does it.
 To few developers do enough testing.
 “Software developers talks a lot about tools.

They evaluate quite a few, buy a fair number, and
use practically none.”*

* Fact 7: “Facts and Fallacies of Software Engineering”, Glass

How to Encourage Testing
 Testing should not be a pain–“The process

should not test your patience”.
 Build a culture of testing.
 Automate everything

that can be automated.
 Make the results

 highly visible.

Our Testing Tool Chain
D

ev
el

op
m

en
t

Te
st

in
g

In
te

gr
at

io
n

P
ro

du
ct

io
n

make
Scripts

for
Static Analysis

svn
ci

runtime

Yatsy

Monitor

Log

Alarm

Xref

Eunit

Dialyzer

Cover

kred_test

ktime

xapi

OpStat

Test Calls

Candies

Eper

*

*

Open source component

Erlang OTP component

Standard component
with Kreditor developers

Kreditor component

* Individual test suites and test cases

Key:

make
test

Cruise
Control

Invocation

Workflow

Our Testing Tool Chain
D

ev
el

op
m

en
t

Te
st

in
g

In
te

gr
at

io
n

P
ro

du
ct

io
n

make
Scripts

for
Static Analysis

svn
ci

runtime

Yatsy

Monitor

Log

Alarm

Xref

Eunit

Dialyzer

Cover

kred_test

ktime

xapi

OpStat

Test Calls

Candies

Eper

*

*

Open source component

Erlang OTP component

Standard component
with Kreditor developers

Kreditor component

* Individual test suites and test cases

Key:

make
test

Cruise
Control

Invocation

Workflow

Static Analysis
 Scripts (make, sed, awk, .sh, etc)
 Coding standards

− Simple stuff: 80 chars lines
− Dangerous stuff:

 Don’t use mnesia, erlang:now, export_all etc

 Xref
− No calls to undefined functions
− No unused exports

 Exceptions: excluded by attribute -ignore_xref([{F,A}]).

Regression Testing
 Yatsy

− Simpler version of OTP test framework.
− Open source on google code.

 Eunit
− (You should have been at EF in SF.)

 Writing new test cases
− This is the tricky part!
− Not automated.
− A number of libraries to help.

Support Libraries 1: kred_test
 Initialising DB with:

− Customers (e-commerce sites, sellers)
− End customers (buyers)
− Transactions
− Etc

Support Libraries 2: ktime
 Replaces erlang:now, date, calendar.
 Works with Gregorian seconds.
 Implements virtual time.
 Makes it possible to jump in time.
 We have test cases that tests events three years

into the future.

Support Libraries 3: xapi
 Functions for generating traffic.
 Not much more to say...

– Just one of those things you really need.

Cruise Control (CC)

 At every check in:
− Does a check out
− Incremental build
− Runs most test suites

 At night:
− Does a clean check out
− Does a clean build
− Runs all tests
+ Cover
+ Dialyzer

 Open Source: http://cruisecontrol.sourceforge.net/

http://cruisecontrol.sourceforge.net
http://cruisecontrol.sourceforge.net

Cruise Control

Log
 Write all important event to some log.

− Httpc: All outgoing requests.

− Xmlrpc: All decoded incoming requests.

− Estore: Interface calls from customers.

− Logic24: Events triggered by night run.

− Debug: Temporary logging.

− Fix: One shot fixes.

 Available through GUI.

 Available after test suites.

 Log rotate on live system

 Backup of all logs (faster than rotate)

Monitor 1: OpStat

Monitor 1: OpStat

Monitor 1: OpStat

Monitor 1: OpStat

Monitor 2: eper
 Open Source project by Mats Cronqvist
 Eper is a loose collection of Erlang Performance related

tools.
 Kreditor uses:

−gperf - a graphical performance monitor; shows CPU,
memory and network usage

−redbug- similar to the OTP dbg application, but safer,
better etc.

Monitor 3: Candies
 Customer side API-

module:
− Times calls to Kreditor

Online.
− Sends, through UDP:

 ID
 Function name
 Result
 Time
 Digest

 Server Side
− Collect Information

 Like stealing candies
from a baby

 Candies == Customer
ANalysis &
DIagnostics Erlang
(pErl) Server

Monitor 4: Test Calls
 External

− Access website
− Perform API calls
− On error:

 Send email
 Send sms

 Internal
− The same thing
+ Ping
+ Light Siren

Alarm
 Send alarms for extraordinary events

− Exceptions
− Process exits
− Developer controlled

 “This shouldn’t happen!”

 Several levels
− Info: email
− Warning: email
− Critical: email + sms
− Panic: email + sms + light siren

More Testing
 Design testing: prototypes
 GUI testing: manual
 Load testing
 Performance testing
 Statistical business logic

− Test acceptance ratio when changing credit policy
 Randomised testing of customer behaviour
 Experimenting with QuickCheck for DB

consistency - (Erlang Workshop)

Conclusion
 We can’t afford buggy code.
 We are still to small to have

a large test department.
 Developers need to test.
 Automate as much as possible.
 Make testing visible.
 Make testing easy and fun.

