
1

RabbitMQ
Sentimental reports from the Erlang frontline

Alexis Richardson
Matthew Sackman

Tony Garnock-Jones

Erlang Factory June 25th 2009

RabbitMQ is a messaging server that just works!

2

Thank you!

Im in yr serverz,
queueing yr messagez
Photo credit: http://flickr.com/photos/53366513@N00/67046506/

copyright (c) Rabbit Technologies Ltd.

You might need messaging if ... you need to scale

3

You might need messaging if ... you need to monitor data feeds

4

(CC) Kishore Nagarigari

You might need messaging if ... you need a message delivered responsibly

5

You might need messaging if ... you need things done in order

6

(CC) David Mach

You might need messaging if ... you are using the cloud

7

Messaging is everywhere

8

Enterprise Service Bus

Client/Server and Hub n' Spoke

Peer Network

Pipeline

Enterprise Service Network

Service Bus

Peer Network

Client - Server (hub) Pipeline

Federation and Cloud

copyright (c) Rabbit Technologies Ltd.

9

Don’t be evil

MIDDLEWARE

LOCK IN

(CC) Giara @flickr.com

10

When middleware goes bad

complex, proprietary, closed

requires installation and customisation

integration services from consultants with
knowledge of many platforms or languages

then maintenance is done by the customer

which is then followed by system aging, bloat,
and eventual heat death

copyright (c) Rabbit Technologies Ltd.

Beware of lock in

11
copyright (c) Rabbit Technologies Ltd.

Meet the good guys

12

13

simple

standard

ubiquitous substrate

no customisation needed

no integration required from consultants

maintenance is done by the vendor

proven to outlast the lifetime of the average software company

(and many banks)

scales

OPEN INTERNET PROTOCOLS - TCP, SCTP, HTTP, SMTP - EPIC WIN

copyright (c) Rabbit Technologies Ltd.

14

simple

standard

ubiquitous substrate

no customisation needed

no integration required from consultants

maintenance is done by the vendor

proven to outlast the lifetime of the average software company

(and many banks)

scales

OPEN INTERNET PROTOCOLS - TCP, SCTP, HTTP, SMTP - EPIC WIN

copyright (c) Rabbit Technologies Ltd.

AMQP - Advanced Message Queueing Protocol

The world is getting more open every day

Then:

Imagine if we had no TCP and had to use ‘IBM NetSphere’

Imagine if we had no HTTP and had to use ‘Microsoft Home Network’

Imagine if we had no SMTP email and had to pay per message like SWIFT

Now:

Imagine if we had no XMPP chat and had to use .. oh, wait a minute :-(

AMQP - business messaging - like email but you can send money over it

15
copyright (c) Rabbit Technologies Ltd.

AMQP combines PUBSUB with QUEUES

16
copyright (c) Rabbit Technologies Ltd.

Tony

Anders

Evan

“is at
work”

“is at
work”

“is at
work”

“is at
work”

“is at
work”

Evan and Anders want to
follow what Tony says. They
can follow Tony by binding
their queues to a
RabbitMQ exchange, using
the pattern “tony”.

Tony publishes the message
“is at work” to the same
RabbitMQ exchange, using
the routing key “tony”.

 The exchange updates
Evan’s and Anders’ queues
accordingly, for subsequent
consumption by their client
applications.

Many other patterns are
possible e.g. for filtering by
topic similar to this: http://
jchris.mfdz.com/posts/64

http://jchris.mfdz.com/posts/64
http://jchris.mfdz.com/posts/64
http://jchris.mfdz.com/posts/64
http://jchris.mfdz.com/posts/64

Erlang inside + your favourite language or protocol on the outside

17
copyright (c) Rabbit Technologies Ltd.

RabbitMQ is distributed in Ubuntu

DMAC

Use Case: Ocean Observatories “Global Twitter for Data”

Service.DomainName

Region Virtual IP

Cloud IPs

USE CASE - BBC Feeds Hub “streaming content management”

USE CASE - NASA Cloud (“Nebula”)

USE CASE - Soocial.com is 100% on Amazon

USE CASE - Second Life

Get stuck in!

24

S R   (D) P

Matthew Sackman1

1LShift

N A 

-   

onePlusOne (1, 1) ->
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
2.

(sr, (rr, rc)) = h ↓4 (p, c, k) q = h ↓3 (c, dual(h, c, k))

sr 6∈ dom(q) n = |h ↓2 (c, r)| q′ = q[sr 7→ (n, {0 7→ v})]
k ∈ channels(h ↓1 (c), r) h′ ↓3= h ↓3 [(c, dual(h, c, k)) 7→ q′]

h′ ↓4= h ↓4 [(p, c, k) 7→ (sr + 1, (rr, rc))] h′ ↓j= h ↓j, j ∈ {1, 2, 5, 6} SEND-0
h, p[E〈send c k v〉] −→ h′

, p[E〈()〉]

(sr, (rr, rc)) = h ↓4 (p, c, k) q = h ↓3 (c, dual(h, c, k))

(n, qr) = q(sr) q′ = q[sr 7→ (n− 1, qr C v)]

k ∈ channels(h ↓1 (c), r) h′ ↓3= h ↓3 [(c, dual(h, c, k)) 7→ q′]

h′ ↓4= h ↓4 [(p, c, k) 7→ (sr + 1, (rr, rc))] h′ ↓j= h ↓j, j ∈ {1, 2, 5, 6} SEND-N
h, p[E〈send c k v〉] −→ h′

, p[E〈()〉]

N A  -   

onePlusOne (1, 1) ->
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
2.

(sr, (rr, rc)) = h ↓4 (p, c, k) q = h ↓3 (c, dual(h, c, k))

sr 6∈ dom(q) n = |h ↓2 (c, r)| q′ = q[sr 7→ (n, {0 7→ v})]
k ∈ channels(h ↓1 (c), r) h′ ↓3= h ↓3 [(c, dual(h, c, k)) 7→ q′]

h′ ↓4= h ↓4 [(p, c, k) 7→ (sr + 1, (rr, rc))] h′ ↓j= h ↓j, j ∈ {1, 2, 5, 6} SEND-0
h, p[E〈send c k v〉] −→ h′

, p[E〈()〉]

(sr, (rr, rc)) = h ↓4 (p, c, k) q = h ↓3 (c, dual(h, c, k))

(n, qr) = q(sr) q′ = q[sr 7→ (n− 1, qr C v)]

k ∈ channels(h ↓1 (c), r) h′ ↓3= h ↓3 [(c, dual(h, c, k)) 7→ q′]

h′ ↓4= h ↓4 [(p, c, k) 7→ (sr + 1, (rr, rc))] h′ ↓j= h ↓j, j ∈ {1, 2, 5, 6} SEND-N
h, p[E〈send c k v〉] −→ h′

, p[E〈()〉]

AMQP  RMQ

W  RMQ?

• An AMQP broker

• Written entirely in Erlang

• Only about 14k lines of Erlang

W  AMQP?

• Protocol for dynamically configurable message routing
platform

• Written entirely by committee

• Only about 14k lines of text

AMQP  RMQ

W  RMQ?

• An AMQP broker

• Written entirely in Erlang

• Only about 14k lines of Erlang

W  AMQP?

• Protocol for dynamically configurable message routing
platform

• Written entirely by committee

• Only about 14k lines of text

AMQP  RMQ

W  RMQ?

• An AMQP broker

• Written entirely in Erlang

• Only about 14k lines of Erlang

W  AMQP?

• Protocol for dynamically configurable message routing
platform

• Written entirely by committee

• Only about 14k lines of text

AMQP  RMQ

W  RMQ?

• An AMQP broker

• Written entirely in Erlang

• Only about 14k lines of Erlang

W  AMQP?

• Protocol for dynamically configurable message routing
platform

• Written entirely by committee

• Only about 14k lines of text

AMQP  RMQ

W  RMQ?

• An AMQP broker

• Written entirely in Erlang

• Only about 14k lines of Erlang

W  AMQP?

• Protocol for dynamically configurable message routing
platform

• Written entirely by committee

• Only about 14k lines of text

AMQP K C

AMQP K C

AMQP K C

AMQP K C

AMQP K C

AMQP K C

AMQP K C

AMQP K C

AMQP K C

AMQP K C

AMQP K C

P  D Q

SM  D
• If a queue is durable and it receives a message that is persistent

then the message will be sent to disk

• Durable queues magically survive broker shutdowns and
reappear with their content they had when they died

• Hard disks are rather slow, so writing to disk as optimally as
possible is a good idea

• If the queue grows really big, then it’s not a good idea to hold
messages in RAM

• ...and for maximum scalability, we don’t want any per-message
data structures

P  D Q

SM  D
• If a queue is durable and it receives a message that is persistent

then the message may be sent to disk

• Durable queues magically survive broker shutdowns and
reappear with their content they had when they died

• Hard disks are rather slow, so writing to disk as optimally as
possible is a good idea

• If the queue grows really big, then it’s not a good idea to hold
messages in RAM

• ...and for maximum scalability, we don’t want any per-message
data structures

P  D Q

SM  D
• If a queue is durable and it receives a message that is persistent

then the message may be sent to disk

• Durable queues magically survive broker shutdowns and
reappear with their content they had when they died

• Hard disks are rather slow, so writing to disk as optimally as
possible is a good idea

• If the queue grows really big, then it’s not a good idea to hold
messages in RAM

• ...and for maximum scalability, we don’t want any per-message
data structures

E P D

O
• Use disk_log
• Write out the current contents of the queue

• Then write out the changes to that queue: publishes, delivers,
acks, etc

• Maintain the content of the queue in RAM

• From time to time, write a new log, with a new snapshot of the
queue

P
• Really fast for simple use cases - one in, one out (optimal)

• Performance degrades as queues get bigger

• Messages held in RAM causes scaling issues

E P D

O
• Use disk_log
• Write out the current contents of the queue

• Then write out the changes to that queue: publishes, delivers,
acks, etc

• Maintain the content of the queue in RAM

• From time to time, write a new log, with a new snapshot of the
queue

P
• Really fast for simple use cases - one in, one out (optimal)

• Performance degrades as queues get bigger

• Messages held in RAM causes some scaling issues

E P D

O
• Use disk_log
• Write out the current contents of the queue

• Then write out the changes to that queue: publishes, delivers,
acks, etc

• Maintain the content of the queue in RAM

• From time to time, write a new log, with a new snapshot of the
queue

P
• Really fast for simple use cases - one in, one out (optimal)

• Performance degrades as queues get bigger

• Messages held in RAM causes massive scaling issues

N D

O
• Messages get appended to a file

• When the current file gets full we start a new file

• Message delivery does not alter any file at all

• When two neighbouring files get empty enough we garbage
collect and combine them

P
• Additional accounting needed, so not optimal in simplest case

• In more complex cases, performance does not degrade

• Accounting done in ets and mnesia so can switch to dets and
disc_only_copies when RAM gets tight

N D

O
• Messages get appended to a file

• When the current file gets full we start a new file

• Message delivery does not alter any file at all

• When two neighbouring files get empty enough we garbage
collect and combine them

P
• Additional accounting needed, so not optimal in simplest case

• In more complex cases, performance does not degrade

• Accounting done in ets and mnesia so can switch to dets and
disc_only_copies when RAM gets tight

A -  

dets_ets_insert(Obj, #state {mode = Mod, table = Tab}) ->
Mod:insert(Tab, Obj).

...
ok = dets_ets_insert({a,b,c}, State),
...

dets_ets_insert(Obj, #state {mode = dets, table = Tab}) ->
ok = dets:insert(Tab, Obj);

dets_ets_insert(Obj, #state {mode = ets, table = Tab}) ->
true = ets:insert(Tab, Obj),
ok.

...
ok = dets_ets_insert({a,b,c}, State),
...

A -  

dets_ets_insert(Obj, #state {mode = Mod, table = Tab}) ->
Mod:insert(Tab, Obj).

...
ok = dets_ets_insert({a,b,c}, State),
...

dets_ets_insert(Obj, #state {mode = dets, table = Tab}) ->
ok = dets:insert(Tab, Obj);

dets_ets_insert(Obj, #state {mode = ets, table = Tab}) ->
true = ets:insert(Tab, Obj),
ok.

...
ok = dets_ets_insert({a,b,c}, State),
...

S  

...
WriteHdl = file:open(Name, [write, raw, binary,

delayed_write]),
...

...
ReadHdl = file:open(Name, [read, raw, binary,

read_ahead]),
...

If the message is in the same file as is being written to, make sure
we file:sync before attempting the read!

S  

...
WriteHdl = file:open(Name, [write, raw, binary,

delayed_write]),
...

...
ReadHdl = file:open(Name, [read, raw, binary,

read_ahead]),
...

If the message is in the same file as is being written to, make sure
we file:sync before attempting the read!

S  

...
WriteHdl = file:open(Name, [write, raw, binary,

delayed_write]),
...

...
ReadHdl = file:open(Name, [read, raw, binary,

read_ahead]),
...

If the message is in the same file as is being written to, make sure
we file:sync before attempting the read!

S 

O   
• We only need to sync when we’re closing a file (maybe?) or...

• ...when reading from the same file as we’re writing to, or...

• ...on tx_commit (must guarantee data’s gone to disk)

• So just hold an is_dirty flag and sync if it’s set on any of the
above + reset the flag.

Tx_commit 

• Lots of tiny transactions hurts - too many file:syncs

• Better to delay sending the reply to tx_commit, bunch them
together and deal with them all in one sync

• Thus if is_dirty, and there are outstanding commits, and
either a timer fires (timer), or we have no work to do
({reply, Result, State, 0} or {noreply, State, 0}) then sync.

S 

O   
• We only need to sync when we’re closing a file (maybe?) or...

• ...when reading from the same file as we’re writing to, or...

• ...on tx_commit (must guarantee data’s gone to disk)

• So just hold an is_dirty flag and sync if it’s set on any of the
above + reset the flag.

Tx_commit 

• Lots of tiny transactions hurts - too many file:syncs

• Better to delay sending the reply to tx_commit, bunch them
together and deal with them all in one sync

• Thus if is_dirty, and there are outstanding commits, and
either a timer fires (timer), or we have no work to do
({reply, Result, State, 0} or {noreply, State, 0}) then sync.

S 

O   
• We only need to sync when we’re closing a file (maybe?) or...

• ...when reading from the same file as we’re writing to, or...

• ...on tx_commit (must guarantee data’s gone to disk)

• So just hold an is_dirty flag and sync if it’s set on any of the
above + reset the flag.

Tx_commit 

• Lots of tiny transactions hurts - too many file:syncs

• Better to delay sending the reply to tx_commit, bunch them
together and deal with them all in one sync

• Thus if is_dirty, and there are outstanding commits, and
either a timer fires (timer), or we have no work to do
({reply, Result, State, 0} or {noreply, State, 0}) then sync.

S 

O   
• We only need to sync when we’re closing a file (maybe?) or...

• ...when reading from the same file as we’re writing to, or...

• ...on tx_commit (must guarantee data’s gone to disk)

• So just hold an is_dirty flag and sync if it’s set on any of the
above + reset the flag.

Tx_commit 

• Lots of tiny transactions hurts - too many file:syncs

• Better to delay sending the reply to tx_commit, bunch them
together and deal with them all in one sync

• Thus if is_dirty, and there are outstanding commits, and
either a timer fires (timer), or we have no work to do
({reply, Result, State, 0} or {noreply, State, 0}) then sync.

A -  

M   F
• Reducing calls to the OS is a good idea, especially when you’re

not IO bound

• In one case, literally halving the number of calls to file:read
doubled performance, even though reading the same volume
of data

• Please give me mmap
• Then please rewrite dets to use mmap

A -  

M   F
• Reducing calls to the OS is a good idea, especially when you’re

not IO bound

• In one case, literally halving the number of calls to file:read
doubled performance, even though reading the same volume
of data

• Please give me mmap

• Then please rewrite dets to use mmap

A -  

M   F
• Reducing calls to the OS is a good idea, especially when you’re

not IO bound

• In one case, literally halving the number of calls to file:read
doubled performance, even though reading the same volume
of data

• Please give me mmap
• Then please rewrite dets to use mmap

A -  

...
F = Obj #myrecord.myfield,
...

...
Accessor = fun #myrecord.field/1,
F = Accessor(Obj),
...

A -  

...
F = Obj #myrecord.myfield,
...

...
Accessor = fun #myrecord.field/1,
F = Accessor(Obj),
...

G # - S 

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist

• We identify duplicates in the disk queue and reference count

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist every time it’s read off disk...

• ...which is once per queue

• Add caching layer to detect queues reading messages that
have already been read and still remain in RAM

G # - S 

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist

• We identify duplicates in the disk queue and reference count

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist

every time it’s read off disk...

• ...which is once per queue

• Add caching layer to detect queues reading messages that
have already been read and still remain in RAM

G # - S 

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist

• We identify duplicates in the disk queue and reference count

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist every time it’s read off disk...

• ...which is once per queue

• Add caching layer to detect queues reading messages that
have already been read and still remain in RAM

G # - S 

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist

• We identify duplicates in the disk queue and reference count

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist every time it’s read off disk...

• ...which is once per queue

• Add caching layer to detect queues reading messages that
have already been read and still remain in RAM

G # - S 

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist

• We identify duplicates in the disk queue and reference count

O   
• A message can end up going to several queues

• But a message’s payload is a binary blob, so if it’s > 64 bytes
then only one copy will exist every time it’s read off disk...

• ...which is once per queue

• Add caching layer to detect queues reading messages that
have already been read and still remain in RAM

C 

M 
• How do you decide when to convert a ram queue to a

disk-only queue?

• How do you decide when to convert a disk-only queue to a
ram queue?

• Given several candidates for each, how do you order them?

A

W  I  M B?
• Not yet released

• Probably still buggy

• But is in our public Hg repository

• Some features still to be implemented

• Targetting the 1.7 release of RabbitMQ

E
. . . , ’ .

Thank you.

Questions?

Demo URL
http://www.reversehttp.net/demos/

standalone/rabbitlog.zip

• Unzip the single HTML file

• Open it from your local disk

• If you use Firefox, you will be asked for
permission to access the network

RabbitHub
RabbitMQ + Mochiweb = PubSubHubBub

Tony Garnock-Jones <tonyg@lshift.net>

PubSubHubBub Basics

Hub SubscriberPublisher

• Polls on subscribers’ behalf
• Uses HTTP push to deliver messages

• http://code.google.com/p/pubsubhubbub/

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

PubSubHubBub Basics

Hub SubscriberPublisher

• Publisher produces an Atom feed
• Someone pings the Hub, pointing at the feed
• The Hub (re)fetches the feed, and ...
• ... digests it, republishing articles on to

Subscribers.

FeedFeed

Feed

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Four Roles

Hub SubscriberPublisher

1. publishing content
2. being notified of new content
3. pushing content to subscribers
4. receiving content from a hub

1. 2. 3. 4.

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Publisher Hub Subscriber

1. 2. 3. 4.

SubscriberSubscriber

4.4.

Subscriber

4.

Chaining Hubs
http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Subscriber

Chaining Hubs

Hub Subscriber3.

4.

SubscriberSubscriber

4.

4.

Hub
4.

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Chaining Hubs

HubPublisher

1. 2. 3. 4.

Hub Subscriber

3. 4.

Subscriber

Publisher

1. 2.

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

From Roles to URLs

3. Subscribable source

• http://example.com/subscribe/...

• .../x/exchangename, .../q/queuename

4. Deliverable sink

• http://example.com/endpoint/...

• .../x/exchangename, .../q/queuename

Subscription

Hub Subscriber

http://sub.example.com/aa

token = 44b06d2e

Agent

“Please subscribe http://
sub.example.com/aa to your feed,

using validation token
44b06d2e”

“Did you want to
subscribe? (Token

44b06d2e)”

“Yes, please!”
“Ok!”

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

RabbitHub Sink

Hub

http://dev.rabbitmq.com/rabbithub/
endpoint/x/amq.fanout

Agent “Please generate (and
remember!) a token for

subscribing you to something”

“Ok: it’s
44b06d2e”

44b06d2e

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

RabbitHub Source

Agent

SubscriberHub

http://dev.rabbitmq.com/rabbithub/
endpoint/x/amq.fanout

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Both Pieces Together

Agent

Hub

http://dev.rabbitmq.com/rabbithub/
endpoint/x/amq.fanout http://.../q/foo

44b06d2e

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Shortcut Binding

QX

Relay
Process

http://...

Direct,
Internal AMQP

Binding

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Full Connectivity

X Q
Exchanges relay

and filter
messages

Queues store
and forward

messages
XQ

XX

Q Q

Relay Process

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Implementation

RabbitMQRabbitHub

Mochiweb

RabbitHub

HTTP

rpc:call/4

AMQP

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

(~1000 lines of Erlang)

SubscriberWebpage

Browser-based Pubsub
http://www.reversehttp.net/demos/standalone/rabbitlog.zip

POST
?

ReverseHttp
• Tunnels HTTP over HTTP, in both

directions

• Lets HTML+JS be full participants in the
web - httpd in a webpage (Opera Unite is like this)

• http://www.reversehttp.net/ has draft
specification and downloadable
implementation (Mochiweb again! ~700
LOC)

• Language-neutral: JS, Java, Python, ...

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

ReverseHttp

ReverseHttp HTML+JS

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Demo URL
http://www.reversehttp.net/demos/

standalone/rabbitlog.zip

• Unzip the single HTML file

• Open it from your local disk

• If you use Firefox, you will be asked for
permission to access the network

Demo

• rabbitlog.html – HTML+JS Pubsub App

• www.reversehttp.net – ReverseHttp

• dev.rabbitmq.com/rabbithub – RabbitHub

• dev.rabbitmq.com – AMQP

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

http://www.rabbitmq.com/
http://github.com/tonyg/rabbithub

http://github.com/tonyg/reversehttp

Questions?

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

From Roles to URLs

Hub

3. pushing content to subscribers
• http://.../subscribe/x/exchangename
• http://.../subscribe/q/queuename

4. receiving content
• http://.../endpoint/x/exchangename
• http://.../endpoint/q/queuename

4. 3.

