RabbitMQ

Sentimental reports from the Erlang frontline

Alexis Richardson
Matthew Sackman
Tony Garnock-Jones

Erlang Factory June 25th 2009

B RabbIt .

RabbitMQ is a messaging server that just works!

B RabbitlV ,
Open Source Enterprise |

Viessaqing copyright (c) Rabbit Technologies Ltd.

You might need messaging if ... you need to scale

laRabbit|VIO 3
Open Source Enterprise Messaging

You might need messaging if ... you need to monitor data feeds

Al R ‘.742256&2256&
A ¢ T

™y
I n ﬂ[!ig

LR DT
R 3 2308w
.s.u.'&. e W Q400 &M%
D TN M»
9} 1845 11620
A ETEEE Iy
IINBINIE FERS a e
Q M WIN 1 S S s
M WK WME I S .S s
eae @I 28 6505 B0 Ne BE B e

, BB 2w @6 8w BF ST

2% mn
N 0%

i s
L RS
NN =

s A

B RabbIt

(CC) Kishore Nagarigari

You might need messaging if ... you need a message delivered responsibly

Starline

.:...._._ , "'v. ¥ _-',-C" ’ f',.‘:- - 5 ; : _‘, - .”\ .._.
, e I R il
B Raboit :

You might need messaging if ... you need things done in order

b AL T Tt

T Y=

Nt e

—

sy ot

(CC) David Mach

B Ra00It :

You might need messaging if ... you are using the cloud

Messaging Is everywhere

T Q Q

Serwce Bus

O

Client - Server (hub)

s

Peer Network Federation and Cloud

Pipeline

P t (c) Rabbit Technologies Ltd

Don’t be evill

MIDDLEWARE

ERRRITSANS T S

(CC) Giara @flickr.com

When middleware goes bad

complex, proprietary, closed
requires installation and customisation

integration services from consultants with
knowledge of many platforms or languages

then maintenance is done by the customer

which is then followed by system aging, bloat,
and eventual heat death

Beware of lock In

i Rabbit|VIO

copyright (c) Rabbit Technologies Ltd.

Q11

a
5§ [,J\ 3D

n I c

Source t

N

ar
\J

Meet the good guys

B Rabbit ;

OPEN INTERNET PROTOCOLS - TCP, SCTP, HTTP, SMTP - EPIC WIN

€

simple

€«

standard

€

ubiquitous substrate

€

no customisation needed

€«

no integration required from consultants

€«

maintenance is done by the vendor

€

proven to outlast the lifetime of the average software company

€«

(and many banks)

€

scales

OPEN INTERNET PROTOCOLS - TCP, SCTP, HTTP, SMTP - EPIC WIN

€

simple

€

standard

€

ubiquitous substrate

AMQP Advanced Message Queueing Protocol
019 IIILUHIGLIUII IUMIUIIUU 1HUVITT UV TIouUlLlAl Il

¢ maintenance is done by the vendor
¢ proven to outlast the lifetime of the average software company
¢ (and many banks)

¢ scales

The world is getting more open every day

€

Then:

€«

Imagine if we had no TCP and had to use ‘IBM NetSphere’

€

Imagine if we had no HT TP and had to use ‘Microsoft Home Network’

€

Imagine if we had no SMTP email and had to pay per message like SWIFT

€«

Now:

€

Imagine if we had no XMPP chat and had to use .. oh, wait a minute :-(

€«

AMAQP - business messaging - like email but you can send money over it

AMQP combines PUBSUB with QUEUES

Evan and Anders want to
follow what Tony says. They
can follow Tony by binding
their queues to a
RabbitMQ exchange, using

Evan the pattern “‘tony”.

Tony publishes the message
“is at work” to the same
RabbitMQ exchange, using
the routing key “tony”.

“is at

The exchange updates
Evan’s and Anders’ queues
accordingly, for subsequent

Anders consumption by their client

applications.

Tony

Many other patterns are
possible e.g. for filtering by
topic similar to this: http://
jchris.mfdz.com/posts/64

B Ra00It ’

copyright (c) Rabbit Technologies Ltd.

http://jchris.mfdz.com/posts/64
http://jchris.mfdz.com/posts/64
http://jchris.mfdz.com/posts/64
http://jchris.mfdz.com/posts/64

Erlang inside + your favourite language or protocol on the outside

lhRaboit/VIO

Open Source Enterprise Messaging

| TRANSPORT
" GATEWAY
B CuenT

Bl ADAPTER

copyright (c) Rabbit Technologies Ltd.

B Raboit

Eucalyptus

Systems™

Ubuntu Enterprise Cloud

UNDER THE

RADAR

“JUDGES CHOICE™ § o vered by Eucalyptus

RabbitMQ is distributed in Ubuntu

se Case: Ocean Observatories “‘Global Twitter for Data”

— T —

Service.DomainName

.

A ey R]

N

F 4 - [} e
e e

T limad 3 0en

A s
\

e

Vitoul 20800 by Mol Pulow aim NCSA Onvew ol Eaea A% Dets Compldatiom Uy Wanme D Brvan Uny Ty oF B NP Farth Tonlu e vialieesr™ ~ota piv

" ubuntu

USE CASE - BBC Feeds Hub “streaming content management”

Introducing... BBC Feeds Hub

Post categories: Radio
Alan Ogilvie | 09:39 UK time, Wednesday, 29 April 2009

Here in the Distribution Technologies team for BBC A&M Interactive, we look at how best
to distribute media and metadata across A&M for current and future platforms; we also
look at how to syndicate our content to external partnerships and the public.

Feeds are a great way of reusing content more easily in an automated way. You're
probably familiar with the example of RSS feeds from blogs or podcasts, which save you
having to visit different sites to collect the information you want. In A&M we reuse and
reversion many different feed formats, not just RSS, to save us duplicating work across
different platforms.

Feeds Hub is one of our new projects focusing on registering, reusing and reversioning
data feeds.

USE CASE - NASA Cloud (“Nebula”)

NEBULA - Cloud Web Interface APPS - Directory

> ubuntu
R RaboitVIO

Open Source Enterprise Messaging

Virtualized Servers

. . . .
LUSTER FILE SYSTEM LUSTER FILE SYSTEM

PHY PHY
NEBULA1 | | NEBULA1 | | NEBULA1 | | NEBULA1 | | NEBULA1Y

USE CASE - Soocial.com is 100% on Amazon

= |

Webapp Requests

ELASTIC W

USE CASE - Second Life

Get stuck in!

WRabbit | 24

SERVING RABBIT ON A (DI1SK) PLATTER

Matthew Sackman'

1LShift

NORMAL ACADEMIC TALK

(sr, (rryrc)) = h L4 (p, ¢, k) g =h |3 (c,dual(h, c, k))
srgdom(@) n=lhly(en)l @ =qlsr (0, {0 v})]
k € channels(h |1 (c),) h" |3=h |3 [(c, dual(h, ¢, k)) — q’]
h La=h 14 [(p,c, k) — (sr+1,(rr, rc))] h’ li=h1l;,j€{1,2,56}

SEND-0
h, plE(send ckv)] — b, p[E(())]
(sr, (rryrc)) = h 14 (p, ¢, k) g =h |3 (c, dual(h, c, k))
(n,qr) =a(sr) @' =gqlsr— (n—1,qr <)]
k € channels(h |1 (¢),) h" |3=h |3 [(c, dual(h, ¢, X)) — q’]
h l4=h 14 [(p,c,k) — (sr+1,(rr,rc))] W L;=h|;,j€{1,2,56} SEND-N

h, p[E(sendckv)] — b, pIEC())]

NORMAL ACADEMIC TALK - ADJUSTED FOR HACKERS

onePlusOne (1, 1) ->

v (sr. (1)) = h L4 (pc. k) q = h I3 (c, dual(h, c, k)
o/o
oo sgdom(@) n=lhly (D) @ =gl (0, {0 v})]
/"/° k € channels(h |1 (c),) h" |3=h |3 [(c, dual(h, ¢, k)) — q’]
Tt b L= Lo l(poc) (4 1 ()] W L=h 1 j € {1,256} crypg
oo h, plE(send ckv)] — b, p[E(())]
Tolh (7, (m 1) = h La (b, c,¥) @ =h L3 (c, dudl(h, c, x))
Dot (n,ar) =q(sr) ' =qlsr— (n—1,4r < V)]
70/ k € channels(h |1 (c),) h" |3=h |3 [(c, dual(h, ¢, kX)) — q’]
‘;; b L= la (o) (1 ()] W L=l € {1256} ooy
o/o
h, plE(send ciev)] — b, p[E(()]
Ioth
Wt
Ioth

2.

AMQP AND RABBITMQ

WHAT 1s RABBITMQ?

* An AMQP broker
 Written entirely in Erlang
* Only about 14k lines of Erlang

WHAT 1s RABBITMQ?

* An AMQP broker
 Written entirely in Erlang
* Only about 14k lines of Erlang

WHAT 1s AMQP?

AMQP AND RABBITMQ

AMQP AND RABBITMQ

WHAT 1s RABBITMQ?

* An AMQP broker
 Written entirely in Erlang
* Only about 14k lines of Erlang

WHAT 1s AMQP?

* Protocol for dynamically configurable message routing
platform

AMQP AND RABBITMQ

WHAT 1s RABBITMQ?

* An AMQP broker
 Written entirely in Erlang
* Only about 14k lines of Erlang

WHAT 1s AMQP?

* Protocol for dynamically configurable message routing
platform

+ Written entirely by committee

AMQP AND RABBITMQ

WHAT 1s RABBITMQ?

* An AMQP broker
 Written entirely in Erlang
* Only about 14k lines of Erlang

WHAT 1s AMQP?

* Protocol for dynamically configurable message routing
platform

+ Written entirely by committee
* Only about 14k lines of text

AMQP Key CONCEPTS

AMQP Key CONCEPTS

AMQP Key CONCEPTS

AMQP Key CONCEPTS

AMQP Key CONCEPTS

.

AMQP Key CONCEPTS

.

AMQP Key CONCEPTS

AMQP Key CONCEPTS

AMQP Key CONCEPTS

2

AMQP Key CONCEPTS

i

AMQP Key CONCEPTS

Vs

PERSISTENCE AND DISK QUEUES

SENDING MESSAGES TO DIsK
* If a queue is durable and it receives a message that is persistent
then the message will be sent to disk

* Durable queues magically survive broker shutdowns and
reappear with their content they had when they died

* Hard disks are rather slow, so writing to disk as optimally as
possible is a good idea

PERSISTENCE AND DISK QUEUES

SENDING MESSAGES TO DIsK
* If a queue is durable and it receives a message that is persistent
then the message may be sent to disk

* Durable queues magically survive broker shutdowns and
reappear with their content they had when they died

* Hard disks are rather slow, so writing to disk as optimally as
possible is a good idea

PERSISTENCE AND DISK QUEUES

SENDING MESSAGES TO DIsK
* If a queue is durable and it receives a message that is persistent
then the message may be sent to disk

* Durable queues magically survive broker shutdowns and
reappear with their content they had when they died

* Hard disks are rather slow, so writing to disk as optimally as
possible is a good idea

* If the queue grows really big, then it's not a good idea to hold
messages in RAM

+ ...and for maximum scalability, we don’t want any per-message
data structures

EXISTING PERSISTER DESIGN

OPERATION

* Usedisk log
+ Write out the current contents of the queue

+ Then write out the changes to that queue: publishes, delivers,
acks, etc

+ Maintain the content of the queue in RAM

* From time to time, write a new log, with a new snapshot of the
queue

EXISTING PERSISTER DESIGN

OPERATION

* Usedisk log
+ Write out the current contents of the queue

+ Then write out the changes to that queue: publishes, delivers,
acks, etc

+ Maintain the content of the queue in RAM

* From time to time, write a new log, with a new snapshot of the
queue

PROPERTIES

* Really fast for simple use cases - one in, one out (optimal)
+ Performance degrades as queues get bigger
* Messages held in RAM causes some scaling issues

EXISTING PERSISTER DESIGN

OPERATION

* Usedisk log
+ Write out the current contents of the queue

+ Then write out the changes to that queue: publishes, delivers,
acks, etc

+ Maintain the content of the queue in RAM

* From time to time, write a new log, with a new snapshot of the
queue

PROPERTIES

* Really fast for simple use cases - one in, one out (optimal)
+ Performance degrades as queues get bigger
* Messages held in RAM causes massive scaling issues

NEw DESIGN

OPERATION

* Messages get appended to a file
* When the current file gets full we start a new file
* Message delivery does not alter any file at all

* When two neighbouring files get empty enough we garbage
collect and combine them

NEw DESIGN

OPERATION

* Messages get appended to a file
* When the current file gets full we start a new file
* Message delivery does not alter any file at all

* When two neighbouring files get empty enough we garbage
collect and combine them

PROPERTIES

+ Additional accounting needed, so not optimal in simplest case
* In more complex cases, performance does not degrade

* Accounting done in ets and mnesia so can switch to dets and
disc_only copies when RAM gets tight

ANGER - PART I

dets_ets_insert(0bj, #state {mode = Mod, table = Tab}) ->
Mod:insert(Tab, 0Obj).

ok = dets_ets_insert({a,b,c}, State),

ANGER - PART I

dets_ets_insert(0bj, #state {mode = Mod, table = Tab}) ->
Mod:insert(Tab, 0Obj).

ok = dets_ets_insert({a,b,c}, State),

dets, table = Tab}) ->

dets_ets_insert(0bj, #state {mode
ok = dets:insert(Tab, 0bj);

dets_ets_insert(0bj, #state {mode
true = ets:insert(Tab, 0Obj),
ok.

ets, table = Tab}) ->

ok = dets_ets_insert({a,b,c}, State),

SOME INTERESTING GOTCHAS

WriteHdl = file:open(Name, [write, raw, binary,
delayed_writel),

SOME INTERESTING GOTCHAS

WriteHdl = file:open(Name, [write, raw, binary,
delayed_writel),

ReadHdl = file:open(Name, [read, raw, binary,
read_ahead]),

SOME INTERESTING GOTCHAS

WriteHdl = file:open(Name, [write, raw, binary,
delayed_writel),

ReadHdl = file:open(Name, [read, raw, binary,
read_ahead]),

If the message is in the same file as is being written to, make sure
we file:sync before attempting the read!

SYNC MINIMISATION

ONLY SYNC WHEN NECESSARY

* We only need to sync when we're closing a file (maybe?) or...
* ..when reading from the same file as we're writing to, or...
+ ..ontx_commit (must guarantee data’s gone to disk)

SYNC MINIMISATION

ONLY SYNC WHEN NECESSARY

* We only need to sync when we're closing a file (maybe?) or...
* ..when reading from the same file as we're writing to, or...
+ ..ontx_commit (must guarantee data’s gone to disk)

* Sojust hold anis_dirty flag and sync if it's set on any of the
above + reset the flag.

SYNC MINIMISATION

ONLY SYNC WHEN NECESSARY

* We only need to sync when we're closing a file (maybe?) or...
* ..when reading from the same file as we're writing to, or...
+ ..ontx_commit (must guarantee data’s gone to disk)

* Sojust hold anis_dirty flag and sync if it's set on any of the
above + reset the flag.

Tx commit COALESCING

* Lots of tiny transactions hurts - too many file:syncs

* Better to delay sending the reply to tx commit, bunch them
together and deal with them all in one sync

SYNC MINIMISATION

ONLY SYNC WHEN NECESSARY

* We only need to sync when we're closing a file (maybe?) or...
* ..when reading from the same file as we're writing to, or...
+ ..ontx_commit (must guarantee data’s gone to disk)

* Sojust hold anis_dirty flag and sync if it's set on any of the
above + reset the flag.

Tx commit COALESCING

* Lots of tiny transactions hurts - too many file:syncs
* Better to delay sending the reply to tx commit, bunch them
together and deal with them all in one sync

* Thusifis_dirty, and there are outstanding commits, and
either a timer fires (timer), or we have no work to do
({reply, Result, State, 0} or {noreply, State, 0}) then sync.

ANGER - PART 2

MAKING THINGS GO FAST

+ Reducing calls to the OS is a good idea, especially when you're
not 10 bound

¢ In one case, literally halving the number of calls to file:read
doubled performance, even though reading the same volume
of data

ANGER - PART 2

MAKING THINGS GO FAST

+ Reducing calls to the OS is a good idea, especially when you're
not 10 bound

¢ In one case, literally halving the number of calls to file:read
doubled performance, even though reading the same volume
of data

- Please give me mmap

ANGER - PART 2

MAKING THINGS GO FAST
+ Reducing calls to the OS is a good idea, especially when you're
not |0 bound

¢ In one case, literally halving the number of calls to file:read
doubled performance, even though reading the same volume
of data

- Please give me mmap

* Then please rewrite dets to use mmap

ANGER - PART 3

F = Obj #myrecord.myfield,

ANGER - PART 3

F = Obj #myrecord.myfield,

Accessor = fun #myrecord.field/1,
F = Accessor(0bj),

(GGOTCHA #2 - SHARING BINARIES

ON THE WAY IN

A message can end up going to several queues

But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist

We identify duplicates in the disk queue and reference count

(GGOTCHA #2 - SHARING BINARIES

ON THE WAY IN

+ A message can end up going to several queues

+ But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist

+ We identify duplicates in the disk queue and reference count

ON THE WAY OUT

+ A message can end up going to several queues

+ But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist

(GGOTCHA #2 - SHARING BINARIES

ON THE WAY IN

+ A message can end up going to several queues

+ But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist

+ We identify duplicates in the disk queue and reference count

ON THE WAY OUT

+ A message can end up going to several queues

+ But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist every time it’s read off disk...

(GGOTCHA #2 - SHARING BINARIES

ON THE WAY IN

+ A message can end up going to several queues

+ But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist

+ We identify duplicates in the disk queue and reference count

ON THE WAY OUT

+ A message can end up going to several queues

+ But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist every time it’s read off disk...

* ..which is once per queue

(GGOTCHA #2 - SHARING BINARIES

ON THE WAY IN

+ A message can end up going to several queues

+ But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist

+ We identify duplicates in the disk queue and reference count

ON THE WAY OUT

+ A message can end up going to several queues

+ But a message’s payload is a binary blob, so if it's > 64 bytes
then only one copy will exist every time it’s read off disk...

* ..which is once per queue

+ Add caching layer to detect queues reading messages that
have already been read and still remain in RAM

CURRENT PROBLEM

MEMORY MANAGEMENT
* How do you decide when to convert a ram queue to a
disk-only queue?

* How do you decide when to convert a disk-only queue to a
ram queue?

* Given several candidates for each, how do you order them?

AVAILABILITY

WHERE CAN I GET THESE MAGIC BEANS?

* Not yet released

* Probably still buggy

+ Butis in our public Hg repository

+ Some features still to be implemented
* Targetting the 1.7 release of RabbitMQ

END

... WAKE UP, IT’S OVER.

Thank you.

Questions?

o @

Q>

Demo URL

http://www.reversehttp.net/demos/
standalone/rabbitlog.zip

. 3) e L34 . I . - .g. . s ',._ '- bl I L dioe _ w Ll g Lo =T - o o 4L Gl in o & s o - P St
» od * &% P A S g P P » e & £ ERCY s o - ¢ s " ” o T 4 R ,1. 2 » q . \J’ 7 A . .
W Py - N " . e “a b S, - & - ’g. s Qi o o ' FUOAnA o a P -4) f - ey L=, A % o | -
F " ‘ M X ?'-‘.- '3 h .l..".: e BN v . o u ? Ty ..: 7 ’ .1 i A :l'.h. ' LEhs :. -":\ LAk el = . --.. - : " :

RabbitHub

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

PubSubHubBub Basics

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

PubSubHubBub Basics

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Four Roles
& 66 o

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Chaining Hubs

l. : . 4.

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Chaining Hubs

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Chaining Hubs

From Roles to URLs

3. Subscribable source

* http://example.com/subscribe/...

: . AT SO Y

* ..Ix/lexchangename,.../q/queuename

PNCmat - N e f
= vt TR

. <A S e
' - Sy el N S el s My BR
TRARY a G e VO e B [P g

. . 155 Lop

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

ubscription

using validation token

B 7 17)

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

RabbitHub Sink

http://dev.rabbitmg.com/rabbithub/
endpoint/x/amq.fanout

44b06d2

‘Please generate (2

r!) a token for

and

subscribing you to something”

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

RabbitHub Source

http://dev.rabbitmg.com/rabbithub/
endpoint/x/amq.fanout

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Both Pieces logether

http://dev.rabbitmg.com/rabbithub/
endpoint/x/amq.fanout

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Shortcut Binding

Direct,
Internal AMQP
Binding

Relay
Process

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Full Connectivity

Exchanges relay Queues store
and filter and forward

e A‘l"l‘.“ﬂ'

e 22 S rdd o, Sebooiiy z Roga ol p) 0 { Sag ~% RS T - SN] ‘
' e e 'Y - 47 [y [p—1 S . ¥ 4 & el B ~ & o) %
. "YYQAQACCOCNNOAC .."’.. [:' " ' S b prLld Lel S "-, TTI1E2\N\
. ¢ ¥ Q ” r . L : - : . " p ¥ a "y Y P b e

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Implementation

AMQP

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Browser-based Pubsub

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

ReverseHttp

® Tunnels HTTP over HT TP in both
directions

® | ets HTML+|S be full participants in the
web - httpd in a2 webpage (Opera Unite is like this)

A > 4
J L - — e
r T
v 1)

o . . A A vy 3 | L 1 aall - Y A) Yy - N >
I J \A -:'_, ¢ A'-',._-;)_1_“i-'. o .-\ o ;.t\ ‘ . D a\y.-".x NFE/ 5N) \lv...". Ao I‘L.’,-.} g haT e PP, 4 y

i

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

ReverseHttp

Demo URL

http://www.reversehttp.net/demos/
standalone/rabbitlog.zip

. 3) e L34 . I . - .g. . s ',._ '- bl I L dioe _ w Ll g Lo =T - o o 4L Gl in o & s o - P St
» od * &% P A S g P P » e & £ ERCY s o - ¢ s " ” o T 4 R ,1. 2 » q . \J’ 7 A . .
W Py - N " . e “a b S, - & - ’g. s Qi o o ' FUOAnA o a P -4) f - ey L=, A % o | -
F " ‘ M X ?'-‘.- '3 h .l..".: e BN v . o u ? Ty ..: 7 ’ .1 i A :l'.h. ' LEhs :. -":\ LAk el = . --.. - : " :

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

Demo

® rabbitlog.html — HTML+JS Pubsub App

% yuyw, reversehttp.net —ReverseHttp
:)il S sl LNl Tl g s il Sl 2 S .. G St A et " T =2 FT."""i ok 41 -.: R -,._..4_-.: :‘) P92 TPt g R ! .

http://www.reversehttp.net/demos/standalone/rabbitlog.zip

http://www.rabbitmg.com/
http://github.com/tonyg/rabbithub
http://github.com/tonyg/reversehttp

'
. =
S v - 2L

.,‘- “ -.'- -,' ‘-.
FIoat b ey S Bty B 20 AP PR SN YRR Ty
v) %= & gEN w9 » = o 3° 4 et

From Roles to URLs
'S

