
Teaching Erlang using Robotics and Player/Stage
ACM SIGPLAN Erlang Workshop 2009

Sten Grüner and Thomas Lorentsen

RWTH Aachen / University Of Kent

5 September 2009

The Problem

Computer Science is losing popularity

◮ The number of CS undergraduates is decreasing

◮ Some CS departments were closed in UK

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 2/31

The Problem

Reasons for the bad image

◮ no connection to the real world

◮ “hacking for hacking’s sake”

◮ pointless code debugging

How can young people be inspired?

◮ give lectures on a real-life context

◮ use cutting-edge libraries and tools

◮ let students contribute to open-source projects

◮ no “correct answer paradigms”

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 3/31

Our idea

Robotics fits perfect in this teaching concept

◮ interesting real-life topic with real-time problems

◮ robots fascinate people

◮ multiple solutions for a task possible

Erlang accomplishes robotics nicely

◮ robots are inherently concurrent

◮ descriptive language enforces conceptual thinking instead of
solving hardware-related problems

◮ easy ad-hoc solving of concurrency problems

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 4/31

Our idea

KERL
Kent Erlang Robotics Library

◮ practical way of teaching Erlang

◮ simple API
◮ emphasise on learning Erlang than learning KERL

◮ layered
◮ build upon existing KERL functions
◮ solve problems without rewriting code

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 5/31

Our idea

Real robots are rare in CS education

1. expensive to deploy and maintain

2. different vendors with incompatible, proprietary APIs

KERL solves these problems in terms of

1. using an open-source middleware

2. using simulation instead of real robots (the usage of real
robots is, of course, still possible)

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 6/31

Our idea

Player

◮ open-source robotic middleware

◮ hardware-independent API for
various vendors

◮ platform-independent, since
driven via TCP

◮ wide-spread and used worldwide
by labs and universities

Stage

◮ extends Player by providing an
indoor 2D simulation

◮ the simulation is very reliable
and physically realistic

Figure: A Pioneer 3-DX with a
laser sensor and a video camera

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 7/31

Our idea

Player

◮ open-source robotic middleware

◮ hardware-independent API for
various vendors

◮ platform-independent, since
driven via TCP

◮ wide-spread and used worldwide
by labs and universities

Stage

◮ extends Player by providing an
indoor 2D simulation

◮ the simulation is very reliable
and physically realistic

Figure: Stage simulating a
Pioneer 3-DX

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 7/31

Architecture overview

User-level modules

◮ easy learning of KERL

◮ comfortable concurrency management

Middleware

◮ robot initialization and control

◮ wrapping functions of Player

Linked-in driver

◮ manages the asynchronous
LibPlayerC-Erlang communication

R o b o t R o b o t R o b o t

P r o c e s s P r o c e s s P r o c e s s

E r l a n g I n t e r f a c e

L i b P l a y e r C

P l a y e r K E R L I n t e r f a c e

E r l a n g L i n k e d - I n D r i v e r

U s e r L e v e l M o d u l e s

C o m m

M u l t i

M o d u l e
P l a y e r

Robo t I n i t i a l i se r
H e l p e r

M i d d l e w a r e L a y e r M o d u l e s

D e v i c e H e l p e r M o v e m e n t H e l p e r

D r i v e r M o d u l e

M u l t i R o b o t H e l p e r

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 8/31

The linked-in driver

LibPlayerC utilised

◮ TCP protocol not documented

◮ LibPlayerC is documented

◮ the library is widely used

Linked-in driver

◮ Erlang-C communication

◮ asynchronous mode

◮ connecting LibPlayerC and EI

◮ hardest piece of work

R o b o t R o b o t R o b o t

P r o c e s s P r o c e s s P r o c e s s

E r l a n g I n t e r f a c e

L i b P l a y e r C

P l a y e r K E R L I n t e r f a c e

E r l a n g L i n k e d - I n D r i v e r

U s e r L e v e l M o d u l e s

C o m m

M u l t i

M o d u l e
P l a y e r

Robo t I n i t i a l i se r
H e l p e r

M i d d l e w a r e L a y e r M o d u l e s

D e v i c e H e l p e r M o v e m e n t H e l p e r

D r i v e r M o d u l e

M u l t i R o b o t H e l p e r

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 9/31

The linked-in driver

LibPlayerC utilised

◮ TCP protocol not documented

◮ LibPlayerC is documented

◮ the library is widely used

Linked-in driver

◮ Erlang-C communication

◮ asynchronous mode

◮ connecting LibPlayerC and EI

◮ hardest piece of work

R o b o t R o b o t R o b o t

E r l a n g I n t e r f a c e

L i b P l a y e r C

P l a y e r K E R L I n t e r f a c e

E r l a n g L i n k e d - I n D r i v e r

Robo t I n i t i a l i se r
H e l p e r

M i d d l e w a r e L a y e r M o d u l e s

D e v i c e H e l p e r M o v e m e n t H e l p e r

D r i v e r M o d u l e

M u l t i R o b o t H e l p e r

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 10/31

The linked-in driver

Driver Module

◮ initiates the linked-in driver

◮ passes messages to the linked-in
driver

◮ receives messages from the
linked-in driver

◮ returns the results back to the
caller

Multi Robot Helper Module (mrh)

◮ robot id is bound to a pid

◮ each robot is handled in its own
process

E r l a n g I n t e r f a c e

P l a y e r K E R L I n t e r f a c e

E r l a n g L i n k e d - I n D r i v e r

U s e r L e v e l M o d u l e s

C o m m

M u l t i

M o d u l e
P l a y e r

Robo t I n i t i a l i se r
H e l p e r

M i d d l e w a r e L a y e r M o d u l e s

D e v i c e H e l p e r M o v e m e n t H e l p e r

D r i v e r M o d u l e

M u l t i R o b o t H e l p e r

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 11/31

Middleware

Middleware Modules

◮ provide an API for
◮ initalisation
◮ movement
◮ reading sensors

◮ simply structured

◮ non-blocking

◮ all modules provide fast and
concurrent functions

◮ control multiple robots from a
single function call

The middleware allows to write basic
robotic applications.

P r o c e s s P r o c e s s P r o c e s s

E r l a n g I n t e r f a c e

E r l a n g L i n k e d - I n D r i v e r

U s e r L e v e l M o d u l e s

C o m m

M u l t i

M o d u l e
P l a y e r

Robo t I n i t i a l i se r
H e l p e r

M i d d l e w a r e L a y e r M o d u l e s

D e v i c e H e l p e r M o v e m e n t H e l p e r

D r i v e r M o d u l e

M u l t i R o b o t H e l p e r

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 12/31

Live examples of KERL usage

Driver initialisation

◮ use mrh module to start the KERL driver

1> Driver = mrh:start ().

<0.34.0>

◮ multiple robots initialised from single driver instance

◮ keeps track of multiple robot instances

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 13/31

Live examples of KERL usage (continued)

Connect to a robot

2> Robot = rih:init(Driver , 0).

<0.37.0>

◮ controlled by passing the PID to many of KERL’s modules

Connect to multiple robots

3> Robots = rih:plinit(Driver , [1,2,3],

[{host , "localhost "}]).

[<0.47.0 > , <0.46.0 > , <0.44.0 >]

◮ done concurrently

◮ simplifies multiple robot initialisation

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 14/31

Live examples of KERL usage (continued)

Movement

4> mvh:move(Robot , distance , 1).

ok

◮ supports: distance, speed, position, difference

Rotation

5> mvh:rotate(Robot , degrees , 180).

ok

◮ supports: speed, degrees

Odometer

6> mvh:get_position(Robot).

{1.0 ,0 ,3.14159}

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 15/31

KERL in action

Laser sensors

1> trimaths:rad2deg(dvh:read_lasers(Robot)).

{[-89.99998127603168 , -89.5013361069293 ,

-89.00274823360647 , -88.50410306450411 ,

-88.00551519118127 , -87.50692731785844 ,

-87.00828214875607 , -86.50969427543322 ,

-86.01104910633087 , -85.51246123300804 ,

|...] ,

[3.94 ,3.94005 ,3.940456 ,8.0 ,8.0 ,8.0 ,8.0 ,8.0 ,8.0 ,8.0 ,

8.0 ,8.0 ,8.0 ,8.0 ,8.0 ,8.0 ,8.0 ,8.0 ,8.0|...]}

◮ returns a pair of lists

1. a list of bearings, here in 0.5◦ steps
2. a list of distances (8m is the maximum)

◮ use this to sense obstacles like walls
◮ implementing collision avoidance

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 16/31

KERL in action

Collision avoidance in Traffic Control Simulation

◮ robots navigate around a map with crossroads
◮ avoiding walls and deciding which way to turn
◮ read lasers every 1 meter

case lists:min(lists:zip(Distances , Bearings)) of

{Distance , Bearing} when Distance < 1.5 ->

case Bearing > 0 of

true -> turn_right ();

_ -> turn_left ()

end;

_ -> skip

end.

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 17/31

KERL in action

Use fiducial sensor to locate other robots and beacons

2>dvh:read_fiducial(Robot).

[{10,

{1.038525 , -0.588442 ,0.0} ,

{0.0 ,0.0 , -1.800621} ,

{0.0 ,0.0 ,0.0} ,

{0.0 ,0.0 ,0.0}} ,

...

]

Returns:

◮ list of found robots and beacons
◮ beacon id (defined in Player world configuration)
◮ relative Position (X, Y, Z)
◮ rotation (Roll, Pitch, Yaw)
◮ position and rotation uncertainty

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 18/31

KERL in action

Fiducial markers in the Traffic Control Simulation

◮ use fiducial sensor to detect nearby robots
◮ queue behind robots

◮ pairs of beacons simulate a set of traffic lights
◮ robot sees beacon ID with fiducial sensor
◮ queries server for beacon state (Green/Red)

case nearest_beacon_state(dvh:read_fiducial(Rid)) of

red -> stop ();

green -> move()

end.

◮ an easy task using KERL

◮ video available on youtube:
http://www.youtube.com/watch?v=a93a1-uYyGk

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 19/31

User-Level Modules

The modules bring some advanced
functions into KERL

Player Module

◮ quick start with KERL

◮ simplified functions

Multi Module

◮ interprocess communication
enhancements

◮ time-synchronisation,
broadcasting, grouping of robots

P r o c e s s P r o c e s s P r o c e s s

E r l a n g I n t e r f a c e

E r l a n g L i n k e d - I n D r i v e r

U s e r L e v e l M o d u l e s

C o m m

M u l t i

M o d u l e
P l a y e r

Robo t I n i t i a l i se r
H e l p e r

M i d d l e w a r e L a y e r M o d u l e s

D e v i c e H e l p e r M o v e m e n t H e l p e r

D r i v e r M o d u l e

M u l t i R o b o t H e l p e r

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 20/31

User-Level Modules: Player Module

The module should be used for first student encounter with
KERL

◮ all essential functions are concentrated in one module

◮ movement functions are artificially made blocking

◮ robot is bound to the process → only one robot per process
◮ reduced number of arguments

player module vs. middleware

1> Driver = player:start ().

<0.34.0>

2> player:init(Driver , 1).

<0.37.0>

3> player:move(distance , 1).

blocks until stop ok

4> player:get_position ().

{0.983893 ,0.0 ,0.0}

1> Driver = mrh:start ().

<0.34.0>

2> Robot = rih:init(Driver , 1).

<0.37.0>

3> mvh:move(Robot , distance , 1).

ok

4> mvh:get_position(Robot).

{0.983893 ,0.0 ,0.0}

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 21/31

User-Level Modules: Multi Module

The Multi Module provides inter-robot communication

◮ a group is implemented through a dispatcher process, which
maintains a list of members and provides services

◮ robots can be included into a group of a dispatcher

◮ dispatchers can be members of a group as well

Functions available for group members:

◮ broadcasting messages to group members

◮ time-synchronisation between group members

◮ “voting” to select a unique leader

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 22/31

Multi Module: Usage

Creating a new group

1> Driver = mrh:start ().

<0.34.0>

2> Dispatcher = multi:start ().

<0.37.0>

Adding a process to a group

3> Process = spawn (?MODULE , main , [Dispatcher , Driver]).

<0.39.0>

4> multi:add(Dispatcher , Process).

ok

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 23/31

Multi Module: Usage (continued)

Time-Synchrnoisation

5> multi:barrier(Dispatcher).

ok

◮ called by a process

◮ unblocks as soon as every group member has called the
function

Broadcasting

5> multi:broadcast(Dispatcher , {self(), {message }}).

ok

◮ called by a process

◮ sends to all group members except the sender

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 24/31

Multi Module: Usage (continued)

Voting

5> multi:vote(Dispatcher , true).

<0.39.0>

◮ called by a process

◮ flag indicates the participation

◮ blocks until all group members voted

◮ after everyone voted the winner is randomly chosen among
participants

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 25/31

Multi Module in action

Multibouncer example

◮ robots move in a formation

◮ barriers are used to start moving synchronously (more or less)

◮ a stop signal is broadcasted as soon as one robot senses a wall
◮ this robot becomes a leader
◮ in case of more than one candidate the leader is selected by

voting

◮ the remaining robots follow the instructions of the leader
◮ the difference between the initial and the final position of the

leader is broadcasted in order to realign the robots

Video available on youtube:
http://www.youtube.com/watch?v=39r207hFE6A

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 26/31

Infrastructure

One of the project aims is to provide an out-of-a-box teaching
environment for Erlang courses. Hence, we provide a rich
infrastructure with KERL:

Scripts

An automated installation of Player/Stage (more details later).

Examples

Basic KERL usage scenarios:

◮ bouncer

◮ wall follower

◮ group action examples (as just seen)

◮ fiducial sensor based spatial synchronisation (from the
beginning)

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 27/31

Infrastructure (continued)

Tutorials
The tricky examples are explained in a walk through manner, e.g.
the usage of multi group voting facilities and broadcasting.

Assignment ideas

The typical assignment is to extend an existing example, e.g. make
the wall follower to be able to follow non-convex walls. We plan to
add more assignment ideas to KERL.

Live CD
A modified Ubuntu Live-CD is available for download. The CD has
Player/Stage and KERL preinstalled and can be used for testing
KERL, as well as for comfortable installations.
The ISO image can also be run comfortably in VMware.

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 28/31

Getting KERL

KERL is available under GPL from http://kerl.sourceforge.net

Installing KERL is easy

◮ install guides available

◮ script speeds up Player/Stage and Kerl installation on Ubuntu

◮ installation simple on Fedora

KERL is portable

◮ KERL runs on any system that supports Erlang

◮ Stage was tested on Fedora, Ubuntu and OSX

◮ Windows support only via VMware (Stage limitations)
◮ Stage performance limitations because of the lack of hardware

OpenGL support

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 29/31

The future of KERL

KERL is easy to extend

◮ modular structure

◮ well documented

◮ let students contribute!

Planned improvements

◮ more devices to be added

◮ implementing the Player TCP protocol in Erlang

◮ examples, tutorials, assignment ideas

◮ Player 3 support

◮ Simplifying the installation
◮ 1 click install
◮ RPM

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 30/31

Summary

If you do not remember anything about KERL – remember
this:

◮ KERL is a library which connects the Player/Stage robot
simulator with Erlang

◮ KERL provides an out-of-a-box teaching environment for an
Erlang course

◮ KERL is easily teachable and follows Erlang’s philosophy

◮ KERL helps to inspire students and brings Erlang into the
educational domain

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 31/31

Summary

If you do not remember anything about KERL – remember
this:

◮ KERL is a library which connects the Player/Stage robot
simulator with Erlang

◮ KERL provides an out-of-a-box teaching environment for an
Erlang course

◮ KERL is easily teachable and follows Erlang’s philosophy

◮ KERL helps to inspire students and brings Erlang into the
educational domain

Any questions?

Sten Grüner and Thomas Lorentsen Teaching Erlang using Robotics and Player/Stage 31/31

