
Putting UBF to Work

(and Getting the Outside World to Talk to Erlang)

Joseph Wayne Norton / Scott Lystig Fritchie
norton@geminimobile.com / fritchie@geminimobile.com

Gemini Mobile Technologies, Inc.

November 12, 2009

Erlang User Conference 2009, Stockholm 1

A Quick Survey
Universal Binary Format

Who has heard of UBF ...

• inside the Erlang community?

• outside the Erlang community?

Who has tinkered with UBF ...

• at home?

• at work?

Who has deployed UBF ...

• as part of a commercial service?

• as part of a commercial product?

Erlang User Conference 2009, Stockholm 2

Introduction
Protocols and Specifications

Many protocols have formal specifications

• ASN.1, ONC-RPC, Corba, AMQP, Thrift, Protocol Buffers,
zillion more ...

Why does industry use such specifications?

• Specify bits “on the wire” in a way all parties agree

• API documentation: how the protocol’s API works

Erlang User Conference 2009, Stockholm 3

Introduction
continued...

We have found that there are very important other reasons ...

• System design and architecture: input for humans

• Protocol meta-data: input for tools

UBF has proved to be very handy in helping us with the above
items ...

Erlang User Conference 2009, Stockholm 4

What is UBF?
in a nutshell

• UBF(A) is a protocol above a stream transport (e.g.
TCP/IP), for encoding structured data roughly equivalent to
well-formed XML.

• UBF(B) is a programming langauge for describing types in
UBF(A) and protocols between clients and servers. UBF(B) is
roughly equivalent to to Verified XML, XML-schemas, SOAP
and WDSL.

• UBF(C) is a meta-level protocol used between UBF client and
servers.

Many, many thanks to Joe Armstrong, UBF’s designer and original
implementor.

Erlang User Conference 2009, Stockholm 5

Why UBF?
in a nutshell

• RPC with a formal, precise specification

• Erlang server implementation

• Erlang and non-Erlang client implementations

• Simple yet elegant, concise yet expressive

• And most importantly ... easy to extend and to customize to
our needs

Erlang User Conference 2009, Stockholm 6

UBF Case Study
A Custom Webmail System

MOBILE

HTTPSMTP/POP/IMAP

PCISPMTA

LDAP

O&M

FRONT API

DIRECTORY STORE DATA STORE

AUTH API

CLIENT API

BACK API

Erlang User Conference 2009, Stockholm 7

UBF Case Study
Contract Statistics

API Contracts Methods Types Leaf Types Records

Auth 2 26 96 53 4

Client 5 28 288 231 13

Front 11 61 469 358 32

Back 10 29 186 136 5

Total 28 85 628 443 35

These code snippets show how to obtain the methods, types, leaf
types, and records of an UBF contract.

Methods = [{Req,Res} || {Req,Res} <- Mod:contract_anystate()].

Types = [{T,Mod:contract_type(T)} || T <- Mod:contract_types()].

LeafTypes = [{T,Mod:contract_type(T)} || T <- Mod:contract_leaftypes()].

Records = [{R,Mod:contract_record(R)} || R <- Mod:contract_records()].

Erlang User Conference 2009, Stockholm 8

UBF Contracts
Changes & New Features

Predefined primitives

• Renamed constant() to atom()

• Renamed int() to integer()

• New float(), tuple(), list(), and proplist() primitives

• Optional type()? - ’undefined’ or type()

• Optional attributes (e.g. binary(ascii,nonempty))
• ascii: only ASCII values
• asciiprintable: only printable ASCII values
• nonempty: not equal to ”, [], <<>>, or {}
• nonundefined: not equal to ’undefined’

Erlang User Conference 2009, Stockholm 9

UBF Contracts
continued ...

User-defined primitives

• New binary and float constants

• Support Erlang syntax for integer constants

• New integer ranges (..integer(), integer()..)

• #record{...} syntax with automatic generation of Erlang
record defines

• [type()]? for optional lists

• [type()]+ for mandatory lists

• [type()]{N}, [type()]{N,}, and [type()]{M,N} for
length-constrained lists

Erlang User Conference 2009, Stockholm 10

UBF Contracts
continued ...

New feature “type importing” ...

• Permit type only contracts (i.e. STATE and ANYSTATE
contract blocks are now optional)

• Import UBF types from other UBF contracts

• Check and permit duplicate UBF types only having the same
definition

Erlang User Conference 2009, Stockholm 11

UBF Contracts
continued ...

New feature “type importing” ...

• Import ABNF-based types from ABNF specifications
• ABNF-based types are formal specifications for binary() types.
• Ander Nygren’s abnfc module is used to parse ABNF

specifications into an internal abstract syntax tree (AST).
• Implemented new ABNF parser for UBF’s contract checker to

verify binaries against ABNF-based types.

• Import EEP8-based types from any Erlang module
• Using a parse transformation, UBF contract types are

automatically added to an existing Erlang module having type
defines.

• Not all EEP8-based types are supported (pid(), fun(), ...)
• Support for EEP8-based records is in progress

Erlang User Conference 2009, Stockholm 12

UBF Plugin Callbacks
Changes & New Features

Stateful is the original callback API implementing a shared plugin
manager process, a per-session contract manager process, and a
per-session plugin process.

Stateless is a new callback API implementing only a per-session
contract manager process and per-session plugin process. The
implementation callback function API is a bit less complex.

LPC is a new callback API implementation that has no side-effects.
LPC stands for Local Procedure Call.

The implementor of a UBF plugin can choose to implement one,
two, or all three of the above callbacks.

Erlang User Conference 2009, Stockholm 13

UBF Transports

Key Points

• Same contract with multiple transports

• Same application with multiple contracts
Erlang User Conference 2009, Stockholm 14

UBF Transports
Changes & New Features

EBF is “Erlang Binary Format”, a simple TCP/IP protocol that
uses Erlang-style conventions.

• Uses Erlang BIFs term to binary() and binary to term() to
serlialize terms.

• Terms are framed using the ’gen tcp’ {packet, 4} format: a
32-bit unsigned integer specifies packet length.

ETF is “Erlang Term Format”, a simple protocol that relies on
Erlang’s native distribution. This approach can be useful for
Erlang-only deployments.

Erlang User Conference 2009, Stockholm 15

UBF Transports
continued ...

JSF is “JavaScript Format”, a simple TCP/IP protocol that uses
JSON (RFC 4627).

• Uses LShift’s Erlang-rfc4627 to serialize terms.

• A few extra conventions are layered on top of LShift’s
implementation to help distinguish between atoms, tuples,
records, and ubf strings.

UBF-JSONRPC is a framework for integrating UBF and
JSON-RPC over HTTP.

• Relies on JSF and provides new helper utilities to encode and
to decode JSON-RPC requests and responses.

• Includes a simple inets-based HTTP client and HTTP server
module that demonstrates how to use the LPC callback API.

Erlang User Conference 2009, Stockholm 16

UBF Meta-Data
Documentation

Client API - add a draft mail (UBF, EBF, and ETF style)

{ mail_add_draft, authinfo(), maildraft_olduid()?, mailheaders(), draftbody_parsed()
, [rfc2396_url()], maildraft_options()?, timeout_or_expires() } =>
{ ok, uid(), [mimepart_url()] } | res_err();

Client API - add a draft mail (JSF and JSON-RPC style)

request {
"version" : "1.1",
"id" : binary(),
"method" : "mail_add_draft",
"params" : [maildraft_olduid()?, mailheaders(), draftbody_parsed()

, [rfc2396_url()], maildraft_options()?, timeout_or_expires()]
}
response {

"version" : "1.1",
"id" : binary(),
"result" : {"$T" : [{"$A" : "ok"}, uid(), [mimepart_url()]]}

| res_err() | null,
"error" : error()?

}
}

Erlang User Conference 2009, Stockholm 17

UBF Meta-Data
Testing

Functional Testing

• Integration - external clients and external servers

• Dialyzer - re-use type definitions

• EUnit - automatic test input generation

• QuickCheck - automatic generation of QuickCheck generators
and abstract state machine property tests

Performance Testing

• Load client generators

• Load server stubs

• Transaction logs and statistics

Erlang User Conference 2009, Stockholm 18

UBF and QuickCheck
Basic Strategy

• Boilerplate generators and properties (with only one push of a
button)

• Custom generators

• Custom properties

• Non-UBF APIs

• Top-down and bottom-up testing

• Low-level transport and high-level application layers

Erlang User Conference 2009, Stockholm 19

What’s Next?

Documentation

• Complete edocs and examples for the UBF code repositories

• ABNF specification for UBF(A), UBF(B), and UBF(C)

• ABNF specification for EBF, JSF, and JSON-RPC

Interoperability

• EUnit: open-source the input generators for UBF

• QuickCheck: open-source the generators and the framework
for UBF

• EEP8: better integration with Erlang specs, types, and records

• FFI: Erlang ports and drivers based on UBF for other
languages (e.g. C/C++, Haskell)

• Other tools and approaches (e.g. Protocol Buffers, Thrift,
BERT)

Erlang User Conference 2009, Stockholm 20

Thank You

http://github.com/norton/ubf
http://github.com/norton/ubf-abnf
http://github.com/norton/ubf-eep8

http://github.com/norton/ubf-jsonrpc

Erlang User Conference 2009, Stockholm 21

