X: intuitive data indexing

discodex: intuitive data indexing

Erlang User Conference, Stockholm, 2009

Jared Flatow
Ville Tuulos

© 2009 Nokia Research Center

X: intuitive data indexing

state of disco

Disco 0.3 highlights

e Easier installation
e New fair scheduler
e Scales better to terabyte-scale datasets

Coming on the pipeline

Embedded web server (mochiweb) for even easier installation
Enhanced management of jobs and resulting data (tagging)
Streaming results

10 / network scheduling

adhoc data analysis & random data access

© 2009 Nokia Research Center

X: intuitive data indexing

big data

many huge (giga/terascale) datasets consist of lots of individual data records

e data is collected incrementally, and never deleted
e samples from an experiment or survey
e e.g. server logs, netflix training set, wikipedia, dna sequencing

some operations on big data are more expensive than others

e properties which have global dependencies are more expensive
e properties which are completely local to individual records are cheaper
e we can usually precompute indices to speed up downstream operations

© 2009 Nokia Research Center

X: intuitive data indexing

wishlist for big data infrastructure

e random access in arbitrary dimensions
e persistent distributed storage

e real-time + low-latency reads

e as-lazy-as-possible evaluation

e heterogeneous k/v scale (bytes to gigabytes)
o efficient multi-dimensional queries/joins ??

e pure and simple interface

© 2009 Nokia Research Center

X: intuitive data indexing

the data storage landscape

e mutable k-v stores
o e.g. dynamo/berkeleydb, tokyo cabinet, etc.
o only support single-key lookup
e bigtable-like (column-based, semi-structured, distributed hash table)
o e.g. hypertable, hbase, cloudstore, hstore, etc.
o highly complex, difficult to get right
o no mature (open-source) implementations
e relational databases
o |ots of overhead, both maintenance and transactional
e erlang-specific
o e.g. mnesia, dets
o not built for scale/high-performance
o no external interface
¢ document-based stores
o e.g. couchdb
o not meant for huge data

© 2009 Nokia Research Center

X: intuitive data indexing

JTJ\\

=

Lh

© 2009 Nokia Research Center

discodb

e |low-level C data structure
e maps key -> multiset(values)
e immutable + persistent: write once to a file
e Python/erlang wrappers: api = dictionary + cnf
© 2009 Nokia Research Center
X: intuitive data indexing
discodb format
designed for lightning fast random-acces
header
(J
. keys -> int ids
IOOkUp keY Id/Offset (minimal perfect hashing)
<
'd Y

tkey id -> [value ids]
.) (delta-encoded)
retriewe values itemtor

-
.

key ids -> keys
\value ids -> values

© 2009 Nokia Research Center

X: intuitive data indexing

discodb.erl

ets-like Erlang binding to discodb

® ddb:new(), ddb:add(Ddb, Key, Val)
® ddb:lookup(Ddb, Key), ddb:query(Ddb, CnfQuery)
® ddb:select(Ddb, MatchSpec)

Lazy query evaluation with continuations

© 2009 Nokia Research Center

X: intuitive data indexing

discodex

distributed discodbs form indices for data

disco jobs create indices/harvest query results

build/query indices through RESTful API

dead simple command line/Python interfaces

indexing parameterized by parser/demuxer/balancer functions
supports querying billions of keys in real-time

© 2009 Nokia Research Center

X: intuitive data indexing

discodex design

disco

master

discodex :

T
http://

python
client

[command line cIier}

> cat dataset | discodex index
> discodex get <index> | discodex query <query>

© 2009 Nokia Research Center

X: intuitive data indexing

live demo!

© 2009 Nokia Research Center

X: intuitive data indexing

questions?

© 2009 Nokia Research Center

