
discodex: intuitive data indexing

discodex: intuitive data indexing

Erlang User Conference, Stockholm, 2009

Jared Flatow

Ville Tuulos

© 2009 Nokia Research Center

discodex: intuitive data indexing

state of disco

Disco 0.3 highlights

Easier installation

New fair scheduler

Scales better to terabyte-scale datasets

Coming on the pipeline

Embedded web server (mochiweb) for even easier installation

Enhanced management of jobs and resulting data (tagging)

Streaming results

IO / network scheduling

adhoc data analysis & random data access

© 2009 Nokia Research Center



discodex: intuitive data indexing

big data

many huge (giga/terascale) datasets consist of lots of individual data records

data is collected incrementally, and never deleted

samples from an experiment or survey

e.g. server logs, netflix training set, wikipedia, dna sequencing

some operations on big data are more expensive than others

properties which have global dependencies are more expensive

properties which are completely local to individual records are cheaper

we can usually precompute indices to speed up downstream operations

© 2009 Nokia Research Center

discodex: intuitive data indexing

wishlist for big data infrastructure

random access in arbitrary dimensions

persistent distributed storage

real-time + low-latency reads

as-lazy-as-possible evaluation

heterogeneous k/v scale (bytes to gigabytes)

efficient multi-dimensional queries/joins ??

pure and simple interface

© 2009 Nokia Research Center



discodex: intuitive data indexing

the data storage landscape

mutable k-v stores

e.g. dynamo/berkeleydb, tokyo cabinet, etc.

only support single-key lookup

bigtable-like (column-based, semi-structured, distributed hash table)

e.g. hypertable, hbase, cloudstore, hstore, etc.

highly complex, difficult to get right

no mature (open-source) implementations

relational databases

lots of overhead, both maintenance and transactional

erlang-specific

e.g. mnesia, dets

not built for scale/high-performance

no external interface

document-based stores

e.g. couchdb

not meant for huge data

© 2009 Nokia Research Center

discodex: intuitive data indexing

© 2009 Nokia Research Center



discodex: intuitive data indexing

discodb

low-level C data structure

maps key -> multiset(values)

immutable + persistent: write once to a file

Python/erlang wrappers: api = dictionary + cnf

© 2009 Nokia Research Center

discodex: intuitive data indexing

discodb format

keys -> int ids
(minimal perfect hashing)

header

key ids -> keys

value ids -> values

key id -> [value ids] 
(delta-encoded)

...

lookup key id/offset

retrieve values iterator

designed for lightning fast random-access

© 2009 Nokia Research Center



discodex: intuitive data indexing

discodb.erl

ets-like Erlang binding to discodb

ddb:new(), ddb:add(Ddb, Key, Val)

ddb:lookup(Ddb, Key), ddb:query(Ddb, CnfQuery)

ddb:select(Ddb, MatchSpec)

Lazy query evaluation with continuations

© 2009 Nokia Research Center

discodex: intuitive data indexing

discodex

distributed discodbs form indices for data

disco jobs create indices/harvest query results

build/query indices through RESTful API

dead simple command line/Python interfaces

indexing parameterized by parser/demuxer/balancer functions

supports querying billions of keys in real-time

© 2009 Nokia Research Center



discodex: intuitive data indexing

discodex design

...

discodb

discodb

discodb

discodb
http://

discodex

disco 

master

http://

> cat dataset | discodex index

> discodex get <index> | discodex query <query>

command line client

python 
client

© 2009 Nokia Research Center

discodex: intuitive data indexing

live demo!

© 2009 Nokia Research Center



discodex: intuitive data indexing

questions?

© 2009 Nokia Research Center


