
Improving your (test)
code with Wrangler

Huiqing Li, Simon Thompson
University of Kent

Andreas Schumacher
Ericsson Software Research

Adam Lindberg
Erlang Training and Consulting

CODE
CODE
CODE

Overview

Refactoring.
The Wrangler tool.
Clone detection.
Why test code?
Case study of SIP message manipulation tests.
General lessons.

Introduction

“Itʼs all in the code, stupid”
Functional programs
embody their design
in their code.

Successful
programs evolve …

… as do their tests,
makefiles etc.

loop(Frequencies) ->

 receive

 {request, Pid, allocate} ->

 {NewFrequencies, Reply} = allocate(Frequencies, Pid),

 reply(Pid, Reply),

 loop(NewFrequencies);

 {request, Pid , {deallocate, Freq}} ->

 NewFrequencies=deallocate(Frequencies, Freq),

 reply(Pid, ok),

 loop(NewFrequencies);

 {'EXIT', Pid, _Reason} ->

 NewFrequencies = exited(Frequencies, Pid),

 loop(NewFrequencies);

 {request, Pid, stop} ->

 reply(Pid, ok)

 end.

exited({Free, Allocated}, Pid) ->

 case lists:keysearch(Pid,2,Allocated) of

 {value,{Freq,Pid}} ->

 NewAllocated = lists:keydelete(Freq,1,Allocated),

 {[Freq|Free],NewAllocated};

 false ->

 {Free,Allocated}

 end.

Soft-Ware
Thereʼs no single
correct design …

… different options
for different
situations.

Maintain flexibility as
the system evolves.

Refactoring

Refactoring means changing the
design or structure of a program …
without changing its behaviour.

RefactorModify

Generalisation
-module (test).
-export([f/1]).

add_one ([H|T]) ->
 [H+1 | add_one(T)];

add_one ([]) -> [].

f(X) -> add_one(X).

-module (test).
-export([f/1]).

add_one (N, [H|T]) ->
 [H+N | add_one(N,T)];

add_one (N,[]) -> [].

f(X) -> add_one(1, X).

-module (test).
-export([f/1]).

add_int (N, [H|T]) ->
 [H+N | add_int(N,T)];

add_int (N,[]) -> [].

f(X) -> add_int(1, X).

Generalisation and renaming

Generalisation
-export([printList/1]).

printList([H|T]) ->
 io:format("~p\n",[H]),
 printList(T);
printList([]) -> true.

printList([1,2,3])

-export([printList/2]).

printList(F,[H|T]) ->
 F(H),
 printList(F, T);
printList(F,[]) -> true.

printList(
 fun(H) ->
 io:format("~p\n", [H])
 end,
 [1,2,3]).

The tool

Refactoring tool support
Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, …

Undo/redo

Enhanced creativity

Wrangler
Refactoring tool for
Erlang

Integrated into Emacs
and Eclipse

Multiple modules

Structural, process,
macro refactorings

Duplicate code
detection …
… and elimination

Testing / refactoring

"Similar" code
identification

Property discovery

Static vs dynamic

Aim to check conditions statically.

Static analysis tools possible … but some
aspects intractable: e.g. dynamically
manufactured atoms.

Conservative vs liberal.

Compensation?

Architecture of Wrangler

Integration with ErlIDE
Tighter control
of what's a
project.

Potential for
adoption by
newcomers to
the Erlang
community.

Clone detection

ʻCode smellsʼ

Bad smell … time to refactor?
• Name does not reflect the meaning
• Function too long
• Code not actually used
• Bad module structure
• Excessive nesting
• Duplicated code

Duplicate code considered harmful

• Increases the probability of bug
propagation.

• Increases the size of the source code
and the executable.

• Increases compile time.
• Increases the cost of maintenance.

But itʼs not always a problem …

Clone detection

The Wrangler clone detector
- relatively efficient
- no false positives

Interactive removal of clones …
… under user guidance.

Integrated into the development environment.

X+4 Y+5X+4 Y+5

What is ʻidenticalʼ code?

variable+number

Identical if values of literals and variables
ignored, but respecting binding structure.

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

What is ʻsimilarʼ code?

X+Y

The anti-unification gives the (most specific)
common generalisation.

Detection Expression search

All instances similar to
this expression …

… and their common
generalisation.

Default threshold:
≥ 20 tokens.

All clones in a project
meeting the threshold
parameters …

… and their common
generalisations.

Default threshold:
≥ 5 expressions and
similarity of ≥ 0.8.

SIP Case Study

Why test code particularly?

Many people touch the code.

Write some tests … write more by copy,
paste and modify.

Similarly with long-standing projects, with
a large element of legacy code.

“Who you gonna call?”

Can reduce by 20% just by aggressively
removing all the clones identified …

… what results is of no value at all.

Need to call in the domain experts.

SIP case study

Session Initiation
Protocol

SIP message processing allows rewriting
rules to transform messages.

SIP message manipulation (SMM) is
tested by smm_SUITE.erl, 2658 LOC.

Reducing the case study

21491022165

……2183922174

2042132201822313

2097122203723422

2131112218626581

Step 1

The largest clone
class has 15
members.

The suggested
function has no
parameters, so
the code is
literally repeated.

Not step 1

The largest clone
has 88 lines, and
2 parameters.

But what does it
represent?

What to call it?

Best to work
bottom up.

The general pattern

Identify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So whatʼs the complication?

Step 3
23 line clone occurs;
choose to replace a
smaller clone.

Rename function
and parameters,
and reorder them.

new_fun() ->
 {FilterKey1, FilterName1, FilterState, FilterKey2,
 FilterName2} = create_filter_12(),
 ?OM_CHECK([#smmFilter{key=FilterKey1,
 filterName=FilterName1,
 filterState=FilterState,
 module=undefined}],
 ?SGC_BS, ets, lookup, [smmFilter, FilterKey1]),
 ?OM_CHECK([#smmFilter{key=FilterKey2,
 filterName=FilterName2,
 filterState=FilterState,
 module=undefined}],
 ?SGC_BS, ets, lookup, [smmFilter, FilterKey2]),
 ?OM_CHECK([#sbgFilterTable{key=FilterKey1,
 sbgFilterName=FilterName1,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey1]),
 ?OM_CHECK([#sbgFilterTable{key=FilterKey2,
 sbgFilterName=FilterName2,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey2]),
 {FilterName2, FilterKey2, FilterKey1, FilterName1,
 FilterState}.

check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
 ?OM_CHECK([#sbgFilterTable{key=FilterKey,
 sbgFilterName=FilterName,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Steps 4, 5
2 variants of check_filter_exists_in_sbgFilterTable …

• Check for the filter occurring uniquely in the table: call to
ets:tab2list instead of ets:lookup.
• Check a different table, replace sbgFilterTable by
smmFilter.

• Donʼt generalise: too many parameters, how to name?
check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
 ?OM_CHECK([#sbgFilterTable{key=FilterKey,
 sbgFilterName=FilterName,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Symbolic calls to deprecated code: erlang:module_loaded
 erlang:module_loaded(M) -> true | false

 code:is_loaded(M) -> {file, Loaded} | false

Define new function code_is_loaded:
code_is_loaded(BS, ModuleName, Result) ->

 ?OM_CHECK(Result, BS, erlang, module_loaded,[ModuleName]).

Remove all calls using fold against function refactoring.

Symbolic calls to deprecated code: erlang:module_loaded
 erlang:module_loaded(M) -> true | false

 code:is_loaded(M) -> {file, Loaded} | false

Re-define the function code_is_loaded:
code_is_loaded(BS, ModuleName, false) ->

 ?OM_CHECK(false, BS, code, is_loaded, [ModuleName]).

code_is_loaded(BS, ModuleName, true) ->

 ?OM_CHECK({file, atom_to_list(ModuleName)}, BS, code,

 is_loaded, [ModuleName]).

Step 6

Symbolic calls to deprecated code: erlang:module_loaded

 erlang:module_loaded(M) -> true | false

 code:is_loaded(M) -> {file, Loaded} | false

Define new function code_is_loaded:
code_is_loaded(BS, ModuleName, Result) ->

 ?OM_CHECK(Result, BS, erlang, module_loaded,[ModuleName]).

Remove all calls using fold against function refactoring.

Different checks: ?OM_CHECK vs ?CH_CHECK
code_is_loaded(BS, om, ModuleName, false) ->

 ?OM_CHECK(false, BS, code, is_loaded, [ModuleName]).

code_is_loaded(BS, om, ModuleName, true) ->

 ?OM_CHECK({file, atom_to_list(ModuleName)}, BS, code,

 is_loaded, [ModuleName]).

But the calls to ?OM_CHECK have disappeared at step 6 …
… a case of premature generalisation!

Need to inline code_is_loaded/3 to be able to use this …

Step 7

Step 10
ʻWidowsʼ and
ʻorphansʼ in clone
identification.

Avoid passing
commands as
parameters?

Also at step 11.

new_fun(FilterName, NewVar_1) ->
 FilterKey = ?SMM_CREATE_FILTER_CHECK(FilterName),
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets
 NewVar_1,
{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

new_fun(FilterName, FilterKey) ->
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

Steps 14+

Similar code detection (default params):
16 clones, each duplicated once.
193 lines in total: get 145 line reduction.

Reduce similarity to 0.5 rather than the
default of 0.8: 47 clones.

Other refactorings: data etc.

Going further

Property extraction
Support property
extraction from 'free'
and EUnit tests.

Identifying state
machines implicit in
sets of test cases.

Fitting into the ProTest
project: move from test
cases to properties in
QuickCheck.

Use Wrangler to spot
clones, and to build
properties from them.

Refactoring and testing
Respect test code in
EUnit, QuickCheck
and Common Test …

 … and refactor tests
along with code
refactoring.

Refactor tests
themselves, e.g.
• Turn tests into EUnit tests.
• Group EUnit tests into a
single test generator.
• Move EUnit tests into a
separate test module.
• Normalise EUnit tests.
• Extract common setup and
tear-down into EUnit fixtures.

Conclusions

Possible to improve code using clone
removal techniques …
… but only with expert involvement.

Not just test code … but itʼs particularly
applicable there.

Hands on demo and tutorial tomorrow.

http://www.cs.kent.ac.uk/projects/wrangler/

